Operational Risk Control with Basel II: Basic Principles and Capital Requirements

Dimitris N. Chorafas
Operational Risk Control with Basel II
Operational Risk Control
with Basel II
Basic principles and capital requirements

Dimitris N. Chorafas
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td>xi</td>
</tr>
<tr>
<td>Preface</td>
<td>xv</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>xix</td>
</tr>
<tr>
<td>Part 1: Operational risk is present at any time in every enterprise</td>
<td>1</td>
</tr>
<tr>
<td>1. Management control of operational risk</td>
<td>3</td>
</tr>
<tr>
<td>1.1. Introduction</td>
<td>3</td>
</tr>
<tr>
<td>1.2. The presence of operational risk in an organization</td>
<td>4</td>
</tr>
<tr>
<td>1.3. The management of operational risk events</td>
<td>8</td>
</tr>
<tr>
<td>1.4. Supervisory response to operational risk</td>
<td>11</td>
</tr>
<tr>
<td>1.5. A strategy for bringing operational risk under control</td>
<td>14</td>
</tr>
<tr>
<td>1.6. Operational risk must be managed at all organizational levels</td>
<td>18</td>
</tr>
<tr>
<td>1.7. Turning operational risk control into a senior management tool</td>
<td>21</td>
</tr>
<tr>
<td>2. Classification, identification and monitoring of operational risk</td>
<td>26</td>
</tr>
<tr>
<td>2.1. Introduction</td>
<td>26</td>
</tr>
<tr>
<td>2.2. Basel Committee directives in understanding operational risk</td>
<td>27</td>
</tr>
<tr>
<td>2.3. Classification of operational risks and the Basel Committee</td>
<td>30</td>
</tr>
<tr>
<td>2.4. A classification and identification system for operational risks</td>
<td>32</td>
</tr>
<tr>
<td>2.5. The Chorafas parallel code system as an organizational infrastructure</td>
<td>35</td>
</tr>
<tr>
<td>2.6. Quantitative and qualitative approaches to operational risk</td>
<td>37</td>
</tr>
<tr>
<td>2.7. A framework for monitoring operational risk</td>
<td>40</td>
</tr>
<tr>
<td>2.8. The art of operational risk modeling</td>
<td>42</td>
</tr>
<tr>
<td>2.9. The role of internal control and auditing in operational risk</td>
<td>44</td>
</tr>
<tr>
<td>3. Legal risk</td>
<td>49</td>
</tr>
<tr>
<td>3.1. Introduction</td>
<td>49</td>
</tr>
<tr>
<td>3.2. Back to basics: the definition of tort</td>
<td>50</td>
</tr>
<tr>
<td>3.3. Responsibilities resulting from legal risk</td>
<td>52</td>
</tr>
<tr>
<td>3.4. Contractual aspects of legal risk</td>
<td>55</td>
</tr>
<tr>
<td>3.5. Crossborder legal risk and bankruptcy laws</td>
<td>58</td>
</tr>
<tr>
<td>3.6. Legal risk may be an impediment to a solution to a banking crisis</td>
<td>61</td>
</tr>
<tr>
<td>3.7. Huge credit losses, securitized corporates and legal risk</td>
<td>63</td>
</tr>
<tr>
<td>3.8. Compliance risk: a case study with the Year 2000 problem</td>
<td>66</td>
</tr>
</tbody>
</table>
4 Management risk

4.1 Introduction

4.2 Management risk in the power crisis in the United States

4.3 The changing nature of energy business calls for high grade management skill

4.4 An operational risk which morphs into major credit risk

4.5 The derivatives losses of EDS: a different management risk

4.6 Management risk at Tyco International

4.7 The CEO should be an example of virtue, not of malfeasance

4.8 Conflicts of interest: from IPOs to disappearing technology firms

5 Information technology risk

5.1 Introduction

5.2 Technology risk defined

5.3 The growing role of IT and its risks

5.4 Advanced IT solutions and smart environments

5.5 Business continuity and IT-related operational risk

5.6 System reliability should always be a major objective

5.7 Trading, payments, settlements, and operational risk associated to IT

5.8 Operational risks that may result from IT outsourcing and insourcing

Part 2: Capital requirements for operational risk and Basel II solutions

6 Allocation of capital to operational risk according to Basel II

6.1 Introduction

6.2 Regulatory capital vs economic capital

6.3 Economic capital and levels of confidence

6.4 A bird’s-eye view of models for operational risk reserves

6.5 The choice among methods for operational risk modeling

6.6 Capital standards and operational risk control costs

6.7 Allocating regulatory capital and economic capital to operational risk

6.8 Capital at risk with operational type losses: a case study

6.9 Operational risk control at the Erste Bank

7 Five models by the Basel Committee for computation of operational risk

7.1 Introduction

7.2 The effort to measure operational risk and the basic indicator approach

7.3 Capital charges under the Basel Committee’s standard approach

7.4 The effort to develop advanced measurement approaches

7.5 Capital allocation with the loss distribution approach

7.6 Databasing and datamining information on operational risks

7.7 Early findings with operational risk models, and the notion of model risk
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>High frequency events, low frequency events and the Six Sigma method</td>
<td>163</td>
</tr>
<tr>
<td>8.1</td>
<td>Introduction</td>
<td>163</td>
</tr>
<tr>
<td>8.2</td>
<td>Understanding the concepts of high frequency and low frequency events</td>
<td>164</td>
</tr>
<tr>
<td>8.3</td>
<td>Characteristics of high frequency and low frequency events</td>
<td>168</td>
</tr>
<tr>
<td>8.4</td>
<td>Experimentation and system design for operational risk control</td>
<td>170</td>
</tr>
<tr>
<td>8.5</td>
<td>Tools most useful in the analysis of operational risks</td>
<td>174</td>
</tr>
<tr>
<td>8.6</td>
<td>Using Six Sigma to improve management control over operations</td>
<td>177</td>
</tr>
<tr>
<td>8.7</td>
<td>The practical applications of Six Sigma are convincing</td>
<td>180</td>
</tr>
<tr>
<td>9</td>
<td>Market discipline, contrary opinion and scoreboard solutions</td>
<td>184</td>
</tr>
<tr>
<td>9.1</td>
<td>Introduction</td>
<td>184</td>
</tr>
<tr>
<td>9.2</td>
<td>The Basel Committee on scoreboards and market discipline</td>
<td>185</td>
</tr>
<tr>
<td>9.3</td>
<td>The use of templates with scoreboards</td>
<td>188</td>
</tr>
<tr>
<td>9.4</td>
<td>Developing more sophisticated scoreboard practices</td>
<td>191</td>
</tr>
<tr>
<td>9.5</td>
<td>Extreme value theory and genetic algorithms for operational risk control</td>
<td>195</td>
</tr>
<tr>
<td>9.6</td>
<td>A common project on operational risk by a group of financial institutions</td>
<td>198</td>
</tr>
<tr>
<td>9.7</td>
<td>A devil’s advocate in operational risk management</td>
<td>202</td>
</tr>
</tbody>
</table>

Part 3: Control of technical risk and operational risk in the insurance industry | 207 |

10 | The science of insurance and the notion of technical risk | 209 |
10.1	Introduction	209
10.2	The science of insurance	210
10.3	Definition of risk factors and their aftermath	213
10.4	Underwriting risk in insurance and the actuaries	216
10.5	Assets held by insurers and their risks	219
10.6	The insurance of operational risk and its underwriting	223
10.7	Services provided by reinsurance: a proxy for insurance of operational risk	226

11 | The use of insurance policies to mitigate operational risk | 230 |
11.1	Introduction	230
11.2	Cost of equity, cost of debt, and cost of insurance	231
11.3	Operational risk securitization and moral hazard	233
11.4	Advent of insurance-linked protection vehicles and underwriters risk	237
11.5	Integrative approaches through alternative risk transfer (ART)	240
11.6	Frequency and impact of events in operational risk transfer through insurance	243
11.7	Insurers who don’t do their homework get burned	245
11.8	Challenges with value accounting in the insurance business	247
12 Role of rating agencies in the creditworthiness of insurance firms 251
12.1 Introduction 251
12.2 Independent rating agencies, their business and their role 253
12.3 Insurance companies and independent rating agencies 255
12.4 Qualitative and quantitative approaches to rating insurance companies 259
12.5 Information is the critical product of rating agencies 262
12.6 Analytical studies are the way of being in charge of risks 266
12.7 Operational risk with marine insurance underwriting: a case study 268

13 Tort is technical and operational risk of insurers 274
13.1 Introduction 274
13.2 Why tort reform is necessary 275
13.3 Learning from the precedent of Y2K tort 277
13.4 Compensation for claims: a case study with asbestos 279
13.5 Asbestos claims have been a nightmare to the insurance industry 281
13.6 Challenges facing major financial institutions and their daily business 284
13.7 Tort exposure and management risk correlate 287

14 The challenge of terrorism and insurer of last resort 290
14.1 Introduction 290
14.2 Business disruption resulting from 9/11 292
14.3 Learning from technical limits with insurance of natural catastrophes 294
14.4 Policies for rethinking insurability of operational risks 298
14.5 Benefits catastrophe bonds might provide 301
14.6 Lloyd’s record losses with 9/11: a prognosticator of future red ink? 303
14.7 Governments as insurers of last resort: a precedent with deposit insurance 307

Part 4 The importance of cost-consciousness in operational risk control 311

15 Deficient cost control is the result of management risk 313
15.1 Introduction 313
15.2 The low cost producer holds the upper ground 314
15.3 Alert companies are in charge of their risks and of their costs: Berkshire and TIAA 319
15.4 An example of controllable technology spending 322
15.5 Isaac Newton appreciated that throwing money at the problem leads nowhere 324
15.6 Putting into action a costing and pricing mechanism for operational risk control 328
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 Cost control is indivisible from operational risk management</td>
<td>331</td>
</tr>
<tr>
<td>16.1 Introduction</td>
<td>331</td>
</tr>
<tr>
<td>16.2 The cost of staying in business</td>
<td>332</td>
</tr>
<tr>
<td>16.3 Operational risk control and the administrative budget</td>
<td>334</td>
</tr>
<tr>
<td>16.4 Are mergers and disinvestments a good way to cut costs?</td>
<td>338</td>
</tr>
<tr>
<td>16.5 Why fat executive options work against shareholder value</td>
<td>341</td>
</tr>
<tr>
<td>16.6 What it means to be in charge of re-engineering</td>
<td>343</td>
</tr>
<tr>
<td>16.7 Establishing and sustaining a transnational advantage</td>
<td>346</td>
</tr>
<tr>
<td>16.8 Capitalizing on the evolving role of financial instruments</td>
<td>348</td>
</tr>
</tbody>
</table>

Index | 351 |
Foreword

Understanding risks in the modern economy

It is with great pleasure that I write this Foreword to the book by Dimitris Chorafas on ‘Operational Risk Control’ as he set out to tackle an almost impossible problem: How to deal with the many risks that financial services firms, and insurance companies in particular, face in the operational risk dimension. As Chorafas rightly explains in Chapter 1, the prevailing definition of operational risk comes from the Basel Committee on Banking Supervision. In their consultative document Operational Risk – Supporting Document to the New Basel Capital Accord of January 2001, the Basel Committee on Banking Supervision writes on page 2 that operational risk is ‘the risk of direct or indirect loss resulting from inadequate or failed internal processes, people and systems or from external events’ and adds the footnote ‘This definition includes legal risk’. One could make a case that such a broad definition is not particularly helpful. As a reaction, many other definitions of operational risk have been proposed, only to come back to the above one. In practice, more often than not, operational risk seems to comprise all those risks that are not dealt with by any other specific control mechanism in a company. This makes it especially awkward to deal with the issue, as there is a tendency to push anything and everything into the category of operational risk whenever any of the other – more traditional and therefore with a clearer framework – risk areas do not appear to apply or fit the situation.

In addition, there is another problem as operational risk does not have its own special champions. Chorafas underlines this by writing in this book that ‘everybody is accountable for operational risk control’. Insurance risks like technical provisions are for the actuaries, financial planning and reporting risks like asset-liability matching are for accountants, information technology risks like computer failures are for the IT experts etc. So who are the operational risks for? Chorafas deals with this issue in a direct or indirect way in many parts of his book. He establishes that they are for human resources specialists as they deal with the people as a source of risk. They are for lawyers as they concern legal issues. They are for economists as they deal with economic events. And so on. However, the main question remains: Who takes ownership in a direct and focused way as the core of his profession? The only real operational risk experts are often the senior management of a company with enough broad overview and understanding of, but at the same time also responsibility for, a company’s exposure, conduct and performance. Unfortunately, they are by training actuaries, accountants, economists, lawyers, engineers etc. who have accepted a shift and an enlargement of their activities to become (more or less) operational risk experts.
The International Association for the Study of Insurance Economics, or by its short name ‘The Geneva Association’ was established in 1973 for the purpose of promoting economic research in the sector of risk and insurance. It is a unique world organization formed by a maximum of eighty chief executive officers from most important insurance companies in the world. Its main goal is to research the growing importance of worldwide insurance activities in all sectors of the economy. It tries to identify fundamental trends and strategic issues where insurance plays a substantial role or which influence the insurance sector. In parallel, The Geneva Association develops and encourages various initiatives concerning the evolution – in economic and cultural terms – of risk management and the notion of uncertainty in the modern economy. The Geneva Association also acts as a forum for its members, providing a worldwide unique platform for the top insurance CEOs. It organizes the framework for its members to exchange ideas and discuss key strategic issues. The Geneva Association serves as a catalyst for progress in this unprecedented period of fundamental change in the insurance industry. It seeks to clarify the key role that insurance plays in the further development of the modern economy. The issue of operational risk has featured prominently in many of the past conferences and seminars of the organization.

As recently as in its February 2003 conference, the Amsterdam Circle of Chief Economists, an international network of the key insurance economists and strategists founded and managed by The Geneva Association, has dealt with the intricacies of operational risk. The group came to some sobering conclusions. Probably the key one being the view that risks from internal operations are fairly well understood today. However, risks from the business and economic environment and other external sources are much less understood.

Operational risk has a lot to do with the concepts that are at the basis of insurance. The modern world, as an integrated production system for economic and social goods and services, is no longer viable without properly functioning insurance solutions. Our actions depend on so many other actors and what they do, that questions of how to join these processes together with tolerable risk exposure have become a central preoccupation of society. Thus, today the insurance industry does not play the role of a standard widget-maker that simply produces a good or service and leaves it up to the market to decide whether to accept it or not. In a globalizing environment where risks are pushed increasingly onto the individual, insurance becomes an essential prerequisite for a modern service economy. Whether with regard to risks associated with the life or the non-life industry, it seems that we all need more and better insurance solutions to manage our existence. We also need, as Chorafas writes, a much better understanding about the operational risk that accompanies our actions and processes.

The economic and financial performance and reliability of humanity has increased greatly. At the same time, our perception of risks and vulnerabilities – partly as a consequence of a higher level of knowledge – has increased to the point of producing feelings of insecurity. This is not only a psychological attitude, but is linked to the fact that every system needs to be controlled, guaranteed and financially protected against failure. This is the context in which insurance and risk management can improve their image and underline the fact that they operate at the very core of our modern society and economy. This effort needs to be accompanied by an adequate understanding of
the theoretical basis of insurance and risk management issues. It is in this light that I am so supportive of the work by Dimitris Chorafas.

It is a paradox that humankind’s obsession with certainty and predictability, supposedly created by a better, more scientific understanding of the world, has led to the insight that we are facing more and more risks every day. As a blind person gradually learning to see, the additional information has not led to the elimination of all risks as was formerly thought, but, on the contrary, to a more pronounced understanding of what the vulnerabilities are and where they lie. The blind walking by an abyss are blissfully ignorant of the danger they are in. The ignorance does not eliminate the risk objectively but removes it on a subjective basis – at least as long as nobody falls down the precipice. Is the world of the blind a better place? Definitely not. We can in some instances try to avoid risky situations, but life without risk is unimaginable. We thus have to learn to live with risks and dangers to our lives and the social and economic fabric that we put in place. The solution cannot be to close our eyes but, on the contrary, to open them wide and deal with any challenges in an informed and proactive way. Operational risk issues are a special case in point. Those risks exist in a very real way, but the risk perception is not always there, and if it is, then often the right management tools do not exist or are not applied. I hope that this book can make a difference in this way.

However, despite great efforts, let us not forget a fundamental truth. The advancements in theoretical and practical understanding have led to the application of calculations that convert a fuzzy understanding of risks into a more or less exact scientific discipline. The key problem here is not the ‘more or less’ but rather the notion of an exact scientific discipline. As Heisenberg demonstrated, there are limits to the exactness of science. This is not the outcome of our limited understanding about the world and its inner mechanisms but rather an inherent part of what constitutes life in itself: the notion of only transitory balances and equilibria that give way to dynamic adjustment processes. We have learned reasonably well to coexist with this uncertainty. Nevertheless, even the best understanding of operational and other risks will not prevent us from suffering important accidents, catastrophes and other misfortunes.

As I wrote in the editorial ‘Towards the New Insurance World’ for the Geneva Papers on Risk and Insurance – Issues and Practice, vol. 27, no.1, of January 2002 (Blackwell Publishers, London), ‘Insurance is the science of the improbable and the art of the impossible’. I am delighted to see that Chorafas has decided to include these reflections in Chapter 10 of his book. Insurance is the ultimate expression of, and test for, risk understanding and management. It is the science of the improbable as risk coverage is usually given for improbable events. Understanding the frequency and severity of a potential claim is a necessary precondition for sound insurance business. More information and better understanding, more efficient tools and instruments will improve this part of the business. However, insurance is also the art of the impossible. We are, from time to time, confronted with events that we would have qualified ex ante as impossible, unrealistic or that we were simply unaware of. This dimension of risk management has also to be applied to operational risk control – perhaps even more to this particular risk category, as it comprises so many different sources of risks.

As any good risk manager knows: If a risk can be sold in the marketplace at reasonable conditions, then risk management is either already efficient or can be made
so. Many operational risks, however, are difficult to place as Chorafas explains in Chapter 11. This is not only true for the fairly new categories of operational risks, but especially for internal operational risks that are closely linked to the established processes of an entity. Those internal operational risks often violate some of the necessary preconditions for obtaining insurance – the absence of moral hazard, adverse selection, asymmetric information etc. This is an important reason for paying special attention to them. While for many risks there is a ready choice to transfer them to another party or otherwise outsource them, internal operational risk is often so closely linked to the very fabric of a company that selling it is very difficult and costly. And if it is sold, then there are carefully worded clauses that protect the buyer from undue exploitation by the seller of these risks. It will be especially interesting to see how the insurance industry and its potential clients will cope with this type of risk in the future. Some interesting solutions will doubtlessly emerge while other aspects of the business will remain uninsurable and the management of those risks will firmly rest with the companies.

Dimitris Chorafas’ book is worth reading for anyone who has an interest in understanding operation risks and their management and control. It provides very useful insights in some of the key issues facing modern companies, their risk managers and the insurance and reinsurance industry.

Patrick M. Liedtke
Secretary General and Managing Director of The Geneva Association
www.genevaassociation.org
Preface

Knowledge wears out if we don’t use it. This book is about knowledge connected to operational risk control, and what we know that can be implemented to help financial institutions and other organizations overcome their operational risk problems. The text is written for managers and professionals, because managers are responsible for a company’s success or failure, as well as for the control of the risks that confront it.

The book addresses practitioners in business and industry: commercial banks, securities houses, service companies, merchandising firms, manufacturing companies, and consulting firms. Members of the board, chief executive officers, chief operating officers, financial directors, back office managers, members of audit committees, auditors (internal and external), lawyers (corporate and partners of law firms), financial analysts, operations managers, information technology officers, and, evidently, operational risk managers and their staff, will all find some of the answers they seek in these pages.

Because the past is not behind us but within us, like rings in a tree, the past is part of the knowledge we have in operational risk identification and control. Therefore, the text brings to the reader’s attention both basic principles and practical examples through case studies. Both should also be of interest to regulators, and certified public accountants. The same is true about forward-looking models presented in this book, like high frequency/low impact and low frequency/high impact of risk events.

A special audience is that of insurance. As a major case study, five chapters present technical risk and operational risk in the insurance industry. Technical risk is taken by insurers in their daily business through the contracts they underwrite for their clients, whose operational risk is quite often the technical risk of the insurer. An example is insurance on malpractice, which amounts to an insurer’s significant exposure to somebody else’s operational risk.

Organization of the text

The text divides into four parts. Part 1 explains how and why operational risk is present in every enterprise, at any time, in any place. Chapter 1 presents ways and means for management to be in charge. It explains what constitutes operational risk events; why operational risks are embedded in all transactions, and at all organizational levels; which strategies help most in bringing operational risk under control; and how control activities can be turned into a senior management tool.

Chapter 2 addresses the issues of classification, identification, and monitoring of operational risk. It starts by following the directives of the Basel Committee, then it capitalizes on past experience from auditing and internal control. A practical
implementation example is presented in Chapter 3, with legal risk. The definition of legal risk is followed by examples on operational risk management with contractual risk, crossborder legal risk, and legal risks taken with securitized products.

The theme of Chapter 4 is management risk in all its manifestations. A practical example is taken with the power crisis in the United States. Other case studies included in this chapter are at the junction of operational risk and credit risk, since the former can morph into the latter. Chapter 5 brings to the reader’s attention technology risk, and what this means for the financial institution. The subjects range from operational risks associated to trading, payments, and settlements, to operational risks resulting from system unreliability as well as from outsourcing and insourcing.

Capital requirements for operational risk, and their modeling, are the subject of Part 2. Chapter 6 explains how the allocation of operational risk capital can be effectively done by means of the methodology advanced by Basel II, provided the institution and its senior management are willing and able to undergo a cultural change. The chapter also brings to the reader’s attention the difference between economic capital and regulatory capital.

Chapter 7 analyzes the first four of the five methods of capital allocation for operational risk, by the Basel Committee on Banking Supervision: the basic indicator approach, standard approach, internal measurement approach, and loss distribution approach. It also explains why the latter two, which are advanced measurement approaches, require leadership in databasing and datamining – which are themselves among the operational risks faced by the institution.

The subject matter of Chapters 8 and 9 is how to establish a scoreboard approach. To provide the proper conceptual base for its development, Chapter 8 addresses itself to high frequency/low impact (HF/LI) events, as well as low frequency/high impact (LF/HI) events. Having defined the concept and the method, it explains what is needed for system design for operational risk control. Through practical applications of Six Sigma, the text explains what can be done.

Chapter 9 focuses on market discipline to be assisted through the scoreboard approach. The level of difficulty in implementation goes from relatively simple templates to sophisticated practices. The text also includes, in connection to operational risk control, extreme value theory and genetic algorithms, and also the method followed by a common op risk project undertaken by 12 major financial institutions.

The focal point of Part 3 is operational risk in the insurance industry. Chapter 10 defines the science of insurance and the notion of technical risk. Risk factors are identified, the role of actuaries is brought into perspective, technical provisions are discussed and, with them, the role played by profitability models. Attention is evidently paid to reinsurance.

The use of insurance policies to mitigate risk is analyzed in Chapter 11. The cost of equity is compared to the cost of debt and the cost of insurance. Alternative risk transfer (ART) is a central theme, while op risk securitization is associated to possible moral hazard. Chapter 12 examines the role of rating agencies in insurance, and insurance-linked cases. It explains how insurance companies are rated, presents a case study with marine insurance underwriting, and elaborates on why and how insurers should do their homework.
Chapter 13 focuses on tort and its relation to operational risk. It presents the thesis of proponents of and contrarians to tort reform; explains what can be learned from the Y2K crisis; and it brings into the picture different outsized compensation for operational risk claims like asbestos. It also explains why tort and management risk correlate. The challenge of terrorism is the subject of Chapter 14, starting with business disruption. While the events of 11 September 2001 are in the background as an extreme event, many other examples are taken to lead the reader into rethinking insurability. Part 3 concludes with the case of governments as insurers of last resort.

The theme of Part 4 is the importance of cost-consciousness in operational risk control. The message it brings to the reader is that costs matter, and that costs and operational risk management correlate in many ways. As Chapter 15 documents, deficient cost control is the result of management risk. Emphasis is therefore placed on the need to be a low-cost producer, with practical examples taken from the financial industry, particularly from companies that have been able to keep their overhead at rock bottom.

Chapter 16 brings to the reader’s attention that, apart the cost of doing business, there is also the cost of staying in business. Operational risk interacts with both of them. The text examines whether mergers are a good way to cut costs, explains what's behind being an innovator of financial services, discusses how to sustain a transnational advantage in an era of globalization, and concludes with ways and means for capitalizing on the evolving role of financial institutions in the economy.

This integrative approach to operational risk management has been necessary because, until quite recently in banking and finance, operational risk has taken a back seat to credit risk and market risk. This is no longer true. Prompted by the new capital adequacy framework (Basel II), by the Basel Committee on Banking Supervision, and its rules, financial institutions are busy rethinking and revamping their operational risk control. This text is a contribution to their efforts.

I am indebted to a long list of knowledgeable people, and of organizations, for their contribution to the research that made this book feasible. Also to several senior executives and experts for constructive criticism during the preparation of the manuscript. The complete list of the senior executives and organizations who participated in this research is shown in the Acknowledgements.

Let me take this opportunity to thank Mike Cash for suggesting this project, Jennifer Wilkinson for seeing it all the way to publication, and Deena Burgess and Elaine Leek for the editorial work. To Eva-Maria Binder goes the credit for compiling the research results, typing the text, and preparing the artwork and index.

Dimitris N. Chorafas
June 2003
Acknowledgements

The following organizations, through their senior executives and system specialists, participated in the research projects that led to the contents of this book and its documentation.
(Countries are listed in alphabetical order)

Austria

National Bank of Austria
Dr Martin Ohms
Finance Market Analysis Department
3, Otto Wagner Platz
Postfach 61
A-1011 Vienna

Association of Austrian Banks and Bankers
Dr Fritz Diwork
Secretary General
11, Boersengasse
1013 Vienna

Die Erste (First Austrian Bank)
Franz Reif
Head, Group Risk Controlling
8, Neutorgasse
A-1010 Vienna

Bank Austria
Dr Peter Fischer
Senior General Manager, Treasury Division

Peter Gabriel
Deputy General Manager, Trading
2, Am Hof
1010 Vienna

Creditanstalt
Dr Wolfgang Lichtl
Market Risk Management

Julius Tandler
Platz 3
A-1090 Vienna

Wiener Betriebs- and Baugesellschaft mbH
Dr Josef Fritz
General Manager
1, Anschützstrasse
1153 Vienna

France

Banque de France
Pierre Jaillet
Director, Monetary Studies and Statistics

Yvan Oronnal
Manager, Monetary Analyses and Statistics

G. Tournemire, Analyst, Monetary Studies
39, rue Croix des Petits Champs
75001 Paris

Secretariat Général de la Commission Bancaire – Banque de France
Didier Peny
Director, Control of Big Banks and International Banks
73, rue de Richelieu
75002 Paris
Acknowledgements

F. Visnowsky
Manager of International Affairs
Supervisory Policy and Research Division

Benjamin Sahel
Market Risk Control
115, Rue Réaumur
75049 Paris Cedex 01

Ministry of Finance and the Economy,
Conseil National de la Comptabilité
Alain Le Bars
Director International Relations and Cooperation
6, rue Louise Weiss

Germany

Deutsche Bundesbank
Hans-Dietrich Peters
Director

Hans Werner Voth
Director

Dr Frank Heid
Banking and Financial Supervision Department
Wilhelm-Epstein Strasse 14
60431 Frankfurt am Main

Federal Banking Supervisory Office
Hans-Joachim Dohr
Director Dept. I

Jochen Kayser
Risk Model Examination

Ludger Hanenberg
Internal Controls
71–101 Gardeschützenweg
12203 Berlin

European Central Bank
Mauro Grande
Director
29 Kaiserstrasse
29th Floor
60216 Frankfurt am Main

Deutsches Aktieninstitut
Dr Rüdiger Von Rosen
President
Biebergasse 6 bis 10
60313 Frankfurt-am-Main

Commerzbank
Peter Bürger
Senior Vice President, Strategy and Controlling

Markus Rumpel
Senior Vice President, Credit Risk Management
Kaiserplatz
60261 Frankfurt am Main

Deutsche Bank
Professor Manfred Timmermann
Head of Controlling

Hans Voit
Head of Process Management, Controlling Department
12, Taunusanlage
60325 Frankfurt

Dresdner Bank
Dr Marita Balk
Investment Bank, Risk Control

Dr Hermann Haaf
Mathematical Models for Risk Control

Claas Carsten Kohl
Financial Engineer
1, Jürgen Ponto Platz
60301 Frankfurt

Volkswagen Foundation
Katja Ebeling
Office of the General Secretary
35 Kastanienallee
30519 Hanover

Herbert Quandt Foundation
Dr Kai Schellhorn
Member of the Board
Hanauer Strasse 46
D-80788 Munich
Acknowledgements

GMD First – Research Institute for
Computer Architecture, Software
Technology and Graphics
Prof. Dr Ing. Wolfgang K. Giloi
General Manager
5, Rudower Chaussee
D-1199 Berlin
75703 Paris Cedex 13

Hungary

Hungarian Banking and Capital
Market Supervision
Dr Janos Kun
Head, Department of Regulation and
Analyses
Dr Erika Vörös
Senior Economist, Department of
Regulation and Analyses
Dr Géza Nyriry
Head, Section of Information Audit
Csalogany u. 9–11
H-1027 Budapest

Hungarian Academy of Sciences
Prof. Dr Tibor Vamos
Chairman, Computer and Automation
Research Institute
Nador U. 7
1051 Budapest

Iceland

The National Bank of Iceland Ltd
Gunnar T. Andersen
Managing Director
International Banking & Treasury
Laugavegur 77
155 Reykjavik

Italy

Banca d’Italia
Eugene Gaiotti
Research Department, Monetary and
Financial Division

Ing. Dario Focarelli
Research Department
91, via Nazionale
00184 Rome

Istituto Bancario San Paolo di Torino
Dr Paolo Chiulenti
Director of Budgeting
Roberto Costa
Director of Private Banking
Pino Ravelli
Director Bergamo Region
27, via G. Camozzi
24121 Bergamo

Luxembourg

Banque Générale de Luxembourg
Prof. Dr Yves Wagner
Director of Asset and Risk
Management
Hans Jörg Paris, International Risk
Manager
27, avenue Monterey
L-2951 Luxembourg

Clearstream
André Lussi
President and CEO
3–5 Place Winston Churchill
L-2964 Luxembourg

Poland

Securities and Exchange Commission
Beata Stelmach
Secretary of the Commission
1, Pl Powstancow Warszawy
00–950 Warsaw

Sweden

The Royal Swedish Academy of
Sciences
Dr Solgerd Björn-Rasmussen
Head Information Department
Dr Olof Tanberg
Foreign Secretary
10405 Stockholm

Skandinaviska Enskilda Banken
Bernt Gyllenswärd
Head of Group Audit
Box 16067
10322 Stockholm

Irdem AB
Gian Medri
Former Director of Research at
Nordbanken
19, Flintlasvagen
S–19154 Sollentuna

Switzerland
Swiss National Bank
Dr Werner Hermann
Head of International Monetary
Relations

Dr Christian Walter
Representative to the Basel Committee

Prof. Urs Birchler
Director, Advisor on Systemic Stability

Robert Fluri
Assistant Director, Statistics Section
15 Böersenstrasse
8022 Zurich

Federal Banking Commission
Dr Susanne Brandemberger
Risk Management

Renate Lischer
Representative to Risk Management
Subgroup, Basel Committee
Marktgasse 37
3001 Bern

Bank for International Settlements
Steven Senior
Basel Committee Secretariat
Hirotaka Hideskima
Basel Committee Secretariat

Claude Sivy
Head of Internal Audit

Herbie Poenisch
Senior Economist, Monetary and
Economic Department

Ingo Fender
Committee on the Global Financial
System
2, Centralplatz
4002 Basel

Crédit Suisse
Christian A. Walter
Vice President, Risk Management
8 Paradeplatz
8070 Zurich

Ahmad Abu El-Ata
Managing Director, Head of IT Office

Dr Burkhard P. Varnholt
Managing Director, Global Research
12/14 Bahnhofstrasse
CH-8070 Zurich

Bank Leu AG
Dr Urs Morgenthaler
Member of Management
Director of Risk Control
32, Bahnhofstrasse
Zurich

Bank J. Vontobel and Vontobel
Holding
Heinz Frauchiger
Chief, Internal Audit Department
Tödistrasse 23
CH-8022 Zurich

Union Bank of Switzerland
Dr Heinrich Steinmann
Member of the Executive Board
(Retired)
Claridenstrasse
8021 Zurich

UBS Financial Services Group
Dr Per-Göran Persson
Executive Director, Group Strategic
Analysis
Acknowledgements

George Pastrana
Executive, Economic Capital Allocation
Stockerstrasse 64
8098 Zurich

University of Fribourg
Prof. Dr. Jürgen Kohlas
Prof. Dr. Andreas Meier
Department of Informatics
2, rue Faucigny
CH-1700 Fribourg

Swiss Re
Dr. Thomas Hess
Head of Economic Research & Consulting
Mythenquai 50/60
P.O. Box
CH-8022 Zürich

United Kingdom

Bank of England
Richard Britton
Director, Complex Groups Division, CGD Policy Department

Ian M. Michael
Senior Manager, Financial Industry and Regulation Division
Threadneedle Street
London EC2R 8AH

Financial Services Authority (FSA)
Lieselotte Burgdorf-Cook
International Relations
7th Floor
25 The North Colonnade
Canary Wharf
London E14 5HS

British Bankers Association
Paul Chisnall
Assistant Director
Pinners Hall
105–108 Old Broad Street
London EC2N 1EX

Accounting Standards Board
A.V.C. Cook
Technical Director
Sandra Thompson
Project Director
Holborn Hall
100 Gray’s Inn Road
London WC1X 8AL

Barclays Bank Plc
Brandon Davies
Treasurer, Global Corporate Banking
Tim Thompson
Head of Economic Capital
Julian Knight
Manager, Group Risk Analysis and Policy
Alan Brown
Director, Group Risk
54 Lombard Street
London EC3P 3AH

Abbey National Treasury Services plc
John Hasson
Director of Information Technology & Treasury Operations
Abbey National House
2 Triton Square
Regent’s Place
London NW1 3AN

Citigroup
Dr. David Lawrence
European Head of Risk Methodologies and Analytics
33 Canada Square
Canary Wharf
London E14 5LB

Rabobank Nederland
Eugen Buck
Managing Director
Senior Project Manager Economic Capital
Thames Court
One Queenhithe
London EC4V 3RL
ABN–AMRO Investment Bank N.V.
David Woods
Chief Operations Officer, Global Equity Directorate
Annette C. Austin
Head of Operational Risk Management Wholesale Client
250 Bishopsgate
London EC2M 4AA

Bankgesellschaft Berlin
Stephen F. Myers
Head of Market Risk
1 Crown Court
Cheapside, London

Standard & Poor’s
David T. Beers
Managing Director, Sovereign & International Public Finance Ratings
Barbara Ridpath
Managing Director, Chief Credit Officer, Europe
Broadgate West
9 Appold Street
London EC2A 2AP

Moody’s Investor Services
Moody’s Risk Management Services
Samuel S. Theodore
Managing Director, European Banks
Alastair Graham
Senior Vice President, Director of Global Training
Lars Hunsche
Project Manager, KMV

Lynn Valkenaar
Project Manager, KMV
David Frohriep
Communications Manager, Europe
2, Minster Court
Mincing Lane
London EC3R 7XB

Fitch Ratings
Charles Prescott
Group Managing Director
David Andrews
Managing Director, Financial Institutions
Travor Pitman
Managing Director, Corporations

Richard Fox
Director, International Public Finance
Eldon House
2, Eldon Street
London EC2M 7UA

A.M. Best Europe
Jose SanchezCrespo
General Manager
1 Minster Court
Mincing Lane
London EC3R 7AA

Merrill Lynch International
Bart Dowling
Director, Global Asset Allocation

Elena Dimova
Vice President, Equity Sales

Erik Banks
Managing Director of Risk Management
Merrill Lynch Financial Center
2 King Edward Street
London EC1A 1HQ

The Auditing Practices Board
Jonathan E.C. Grant
Technical Director

Steve Leonard
Internal Controls Project Manager
P.O.Box 433
Moorgate Place
London EC2P 2BJ
Acknowledgements

International Accounting Standards Committee
Ms Liesel Knorr
Technical Director
166 Fleet Street
London EC4A 2DY

MeesPierson ICS
Arjan P. Verkerk
Director, Market Risk
Camomile Court
23 Camomile Street
London EC3A 7PP

Trema UK Ltd
Dr Vincent Kilcoyne
Business Architecture
75 Cannon Street
London EC2N 5BN

Charles Schwab
Dan Hattrup
International Investment Specialist
Crosby Court
38 Bishopsgate
London EC2N 4AJ

Charity Commission
Susan Polak
Mike McKillop
J. Chauhan
13–15 Bouverie Street
London ECAY 8DP

The Wellcome Trust
Clare Matterson
Member of the Executive Board and
Head of Policy
210 Euston Road
London NW1 2BE

Association of Charitable Foundations
Nigel Siederer
Chief Executive
2, Plough Yard
Shoreditch High Street
London EC2A 3LP

IBM United Kingdom
Derek Duerden
Technical Strategy, EMEA Banking
Finance & Securities Business
76 Upper Ground
London SE1 9PZ

City University Business School
Professor Elias Dinenis
Head, Department of Investment
Risk Management & Insurance

Prof. Dr John Hagnioannides
Department of Finance
Frobisher Crescent
Barbican Centre
London EC2Y 8BH

TT International
Timothy A. Tacchi
Co-Chief Executive Officer
Henry Bedford
Co-Chief Executive Officer
Robin A.E. Hunt
Martin House
5 Martin Lane
London EC4R 0DP

Alternative Investment Management Association (AIMA)
Emma Mugridge
Director
10 Stanhope Gate
Mayfair
London W1K 1AL

Ernst & Young
Pierre-Yves Maurois
Senior Manager, Risk Management and Regulatory Services
Rolls House
7 Rolls Buildings
Fetter Lane
London E4A 1NH

Brit Syndicates Limited at Lloyd’s
Peter Christmas
Hull Underwriter
Acknowledgements

Anthony Forsyth
Marine Underwriter
Marine, Aviation, Transport & Space
Division
Box 035
Lloyd’s
1 Lime Street
London EC3M 7DQ

United States

Federal Reserve System, Board of
Governors
David L. Robinson
Deputy Director, Chief Federal
Reserve Examiner

Alan H. Osterholm, CIA, CISA
Manager, Financial Examinations
Section

Paul W. Bettge
Assistant Director, Division of Reserve
Bank Operations

Gregory E. Eller
Supervisory Financial Analyst,
Banking

Gregory L. Evans
Manager, Financial Accounting

Martha Stallard
Financial Accounting, Reserve Bank
Operations
20th and Constitution, NW
Washington, DC 20551

Federal Reserve Bank of Boston
William McDonough
Executive Vice President

James T. Nolan
Assistant Vice President
P.O. Box 2076
600 Atlantic Avenue
Boston, MA

Federal Reserve Bank of San Francisco
Nigel R. Ogilvie, CFA
Supervising Financial Analyst
Emerging Issues
101 Market Street
San Francisco, CA

Seattle Branch, Federal Reserve Bank
of San Francisco
Jimmy F. Kamada
Assistant Vice President

Gale P. Ansell
Assistant Vice President, Business
Development
1015, 2nd Avenue
Seattle, WA 98122–3567

Office of the Comptroller of the
Currency (OCC)
Bill Morris
National Bank Examiner/Policy
Analyst,
Core Policy Development Division

Gene Green
Deputy Chief Accountant
Office of the Chief Accountant
250 E Street, SW
7th Floor
Washington, DC

Federal Deposit Insurance Corporation
(FDIC)
Curtis Wong
Capital Markets, Examination Support

Tanya Smith
Examination Specialist, International
Branch

Doris L. Marsh
Examination Specialist, Policy Branch
550 17th Street, NW
Washington, DC

Office of Thrift Supervision (OTS)
Timothy J. Stier
Chief Accountant
1700 G Street Northwest
Washington, DC, 20552
Acknowledgements

Securities and Exchange Commission,
Washington, DC
Robert Uhl
Professional Accounting Fellow
Pascal Desroches
Professional Accounting Fellow
John W. Albert
Associate Chief Accountant
Scott Bayless
Associate Chief Accountant
Office of the Chief Accountant
Securities and Exchange Commission
450 Fifth Street, NW
Washington, DC, 20549

Securities and Exchange Commission,
New York
Robert A. Sollazzo
Associate Regional Director
7 World Trade Center
12th Floor
New York, NY 10048

Securities and Exchange Commission,
Boston
Edward A. Ryan, Jr
Assistant District Administrator
(Regulations)
Boston District Office
73 Tremont Street, 6th Floor
Boston, MA 02108–3912

Microsoft
Dr Gordon Bell
Senior Researcher
Bay Area Research Center of
Microsoft Research
455, Market Street
Suite 1690
San Francisco, CA 94105

American Bankers Association
Dr James Chessen
Chief Economist

Mr Douglas Johnson
Senior Policy Analyst
1120 Connecticut Ave NW
Washington, DC 20036

International Monetary Fund
Alain Coune
Assistant Director, Office of Internal
Audit and Inspection
700 19th Street NW
Washington DC, 20431

Financial Accounting Standards Board
Halsey G. Bullen
Project Manager
Jeannot Blanchet
Project Manager
Teri L. List
Practice Fellow
401 Merritt
Norwalk, CN 06856

Henry Kaufman & Company
Dr Henry Kaufman
660 Madison Avenue
New York, NY 10021

Soros Fund Management
George Soros
Chairman
888 Seventh Avenue, Suite 3300
New York, NY 10106

Carnegie Corporation of New York
Armanda Famiglietti
Associate Corporate Secretary,
Director of Grants Management
437 Madison Avenue
New York, NY 10022

Alfred P. Sloan Foundation
Stewart F. Campbell
Financial Vice President and Secretary
630 Fifth Avenue, Suite 2550
New York, NY 10111
Rockefeller Brothers Fund
Benjamin R. Shute, Jr
Secretary
437 Madison Avenue
New York, NY 10022–7001

The Foundation Center
79 Fifth Avenue
New York, NY 10003–4230

Citibank
Daniel Schutzer
Vice President, Director of Advanced Technology
909 Third Avenue
New York, NY 10022

Swiss Re
David S. Laster, PhD
Senior Economist
55 East 52nd Street
New York, NY 10055

Prudential Securities
Bella Loykhter
Senior Vice President, Information Technology
Kenneth Musco
First Vice President and Director, Management Internal Control
Neil S. Lerner
Vice President, Management Internal Control
1 New York Plaza
New York, NY

Merrill Lynch
John J. Fosina
Director, Planning and Analysis
Paul J. Fitzsimmons
Senior Vice President, District Trust Manager

David E. Radcliffe
Senior Vice President, National Manager Philanthropic Consulting Corporate and Institutional Client Group
World Financial Center, North Tower
New York, NY 10281–1316

Permal Asset Management
Isaac R. Souede
President and CEO
900 Third Avenue
New York, NY 10022
(telephone interview)

HSBC Republic
Susan G. Pearce
Senior Vice President
Philip A. Salazar
Executive Director
452 Fifth Avenue, Tower 6
New York, NY 10018

International Swaps and Derivatives Association (ISDA)
Susan Hinko
Director of Policy
600 Fifth Avenue, 27th Floor, Rockefeller Center
New York, NY 10020–2302

Standard & Poor’s
Clifford Griep
Managing Director
25 Broadway
New York, NY 10004–1064

Mary Peloqyun-Dodd
Director, Public Finance Ratings
55 Water Street
New York, NY 10041–0003

Moody’s Investor Services
Lea Carty
Director, Corporates
99 Church Street
New York, NY 10022
State Street Bank and Trust
James J. Darr
Executive Vice President, US Financial
Assets Services
225 Franklin Street
Boston, MA 02105–1992

MBIA Insurance Corporation
John B. Caouette
Vice Chairman
113 King Street
Armonk, NY 10504

Global Association of Risk Professionals (GARP)
Lev Borodovski
Executive Director, GARP, and
Director of Risk Management,
Credit Suisse First Boston (CSFB),
New York

Yong Li
Director of Education, GARP, and
Vice President, Lehman Brothers, New York

Dr Frank Leiber
Research Director, and
Assistant Director of Computational Finance,
Cornell University, Theory Center,
New York

Roy Nawal
Director of Risk Forums, GARP
980 Broadway, Suite 242
Thornwood, NY

Group of Thirty
John Walsh
Director
1990 M Street, NW
Suite 450
Washington, DC, 20036

Broadcom Corporation
Dr Henry Samueli
Co-Chairman of the Board, Chief Technical Officer
16215 Alton Parkway
P.O.Box 57013
Irvine, CA 92619–7013

Edward Jones
Ann Ficken
Director, Internal Audit
201 Progress Parkway
Maryland Heights, MO 63043–3042

Teachers Insurance and Annuity Association/College Retirement Equities Fund (TIAA/CREF)
John W. Sullivan
Senior Institutional Trust Consultant
Charles S. Dvorkin
Vice President and Chief Technology Officer
Harry D. Perrin
Assistant Vice President, Information Technology
Patty Steinbach
Investment Advisor
Tim Prosser
Lawyer
730 Third Avenue
New York, NY 10017–3206

Sterling Foundation Management
Dr Roger D. Silk
Principal
14622 Ventura Blvd
Suite 745
Sherman Oaks, CA 91403

Grenzebach Glier & Associates, Inc.
John J. Glier
President and Chief Executive Officer
55 West Wacker Drive
Suite 1500
Chicago, IL 60601
Acknowledgements

Massachusetts Institute of Technology
Ms Peggy Carney
Administrator, Graduate Office

Michael Coen, PhD Candidate
ARPA Intelligent Environment Project
Department of Electrical Engineering
and Computer Science
Building 38, Room 444
50 Vassar Street
Cambridge, MA, 02139

Henry Samueli School of Engineering
and Applied Science, University of
California, Los Angeles
Dean A.R. Frank Wazzan
School of Engineering and Applied
Science
Prof. Stephen E. Jacobson
Dean of Student Affairs
Dr Les Lackman
Mechanical and Aerospace
Engineering Department
Prof. Richard Muntz
Chair, Computer Science Department
Prof. Dr Leonard Kleinrock
Telecommunications and Networks
Prof. Chih-Ming Ho, PhD
Ben Rich-Lockheed Martin Professor
Mechanical and Aerospace
Engineering Department
Dr Gang Chen
Mechanical and Aerospace
Engineering Department
Prof. Hal G. Monbouquette, PhD
Chemical Engineering Department
Prof. Jack W. Judy
Electrical Engineering Department
Abeer Alwan
Bioengineering
Prof. Greg Pottie
Electrical Engineering Department
Prof. Lieven Vanderberghe
Electrical Engineering Department

Anderson Graduate School of
Management, University of
California, Los Angeles
Prof. John Mamer
Former Dean
Prof. Bruce Miller

Roundtable Discussion on Engineering
and Management Curriculum
(October 2, 2000)
Dr Henry Borenstein, Honeywell
Dr F. Issacci, Honeywell
Dr Ray Haynes, TRW
Dr Richard Croxall, TRW
Dr Steven Bouley, Boeing
Dr Derek Cheung, Rockwell
Westwood Village
Los Angeles, CA 90024

University of Maryland
Prof. Howard Frank
Dean, The Robert H. Smith School of
Business
Prof. Lemma W. Senbert
Chair, Finance Department
Prof. Haluk Unal
Associate Professor of Finance
Van Munching Hall
College Park, Maryland 20742–5
Part 1

Operational risk is present at any time in every enterprise
1 Management control of operational risk

1.1 Introduction

The prevailing definition of operational risk (op risk) comes from the Basel Committee on Banking Supervision. It states that ‘Operational Risk is the risk of loss from inadequate internal processes or failed internal control. These processes may regard people, tools, methods, procedures, or systems.’ Operational risk also stems from external events that are not always under the control of our organization. Internal and external op risk factors are defined in section 1.2.

The concept of operational risk control is new, but the facts themselves – at least a good deal of them – have existed for some time. Many of the newer operational risks are the aftermath of the expanding business horizon, as well as of the fact that the company of the twenty-first century is transforming itself into an entity that is:

- Rich in professionals, and
- Thin in managers.

Therefore, operational risk control must take full account of the likelihood the evolving organizational structure will resemble an orchestra with 300 professionals and one conductor, as Peter Drucker suggests. An orchestra does not have sub-conductors, in the way industrial and financial organizations are presently built. It has a first violin, a top professional who distinguishes himself by being a virtuoso – and who himself is part of the operational risk landscape.

As the events of 2001–2002, including CEO malfeasance, have shown, one of the problems in modern business and industry is that companies have too many virtuosi poorly controlled by the board. Chapter 4 will explain that management risk is an inseparable part of operational risk. Often, too often to my mind, the bottleneck is at the top.

To account for operational risks that go beyond fraud and other well-known cases, many financial institutions have their own definition, which largely complements that of Basel and reflects what I just stated. For instance, Crédit Suisse defines operational risk as the: ‘Potential adverse impact improper or inadequate business conduct will have on operations.’ Banks class operational risk as the second most important category of exposure after credit risk. To face op risk challenges, they allocate part of their economic capital. This issue is discussed in Part 2.

John Hasson, of Abbey National Bank, aptly said that there exists no unique model on how to map operational risk into neatly organized categories. Nevertheless, a growing number of credit institutions tend to distinguish between five major operational risk classes: Organizational, policies and processes, technological,
human-engineered, and due to counterparties or generally external factors. Banks that have studied the origins of op risk appreciate that:

- It is causal
- It is event-oriented, and
- Its aftermath is loss and damage.

Key indicators for operational risk include: outstanding risk claims; number of errors, by channel; frequency of other incidents; impact of each class of incidents in economic terms; legal issues connected to op risk; level and sophistication of staff training; staff turnover; and the way in which jobs are organized and supported – including information technology (IT) supports. Operational risk often results in reputational damage, over and above the costs associated with standalone events and op risks characterized by a certain synergy with one another.

Last but not least, to face the challenges associated to operational risk, banks must set aside adequate capital reserves. Following the third quantitative impact study (QIS3) of Basel II, changes have been made to the treatment of capital requirements for operational risk. The most significant is that of prompting banks to model or otherwise assess their operational risk requirements using one of the advanced approaches.

- Loss distribution (see Chapter 7), which is practically bottom-up, and
- Scoreboard (see Chapter 9), which is a top-down method.

With both advanced operational risk measurement approaches, initiative and guidance is the responsibility not only of regulators but also, and most particularly, of the institution’s own top management. The board, CEO, and all executives must appreciate that operational risk represents a significant threat to the company’s statutory objectives. There is no way to deny that this should be a senior management concern.

1.2 The presence of operational risk in an organization

Operational risks are present whether the business is regulated or deregulated; centralized or decentralized; proceduralized or free rein; old technology or high technology; local, nationally based, or international; characterized by simple products or by complex products; trading through a single channel or multiple channels. In banking, operational risk tends to partly overlap with market risk and credit risk, as Figure 1.1 demonstrates.

In a way similar to what we do with credit risk and market risk, operational risk should be examined from a strategic perspective. A strategic evaluation does not mean we have to be perfect. We only have to be better than our competitors. In credit risk terms, comparisons are made through grades assigned by independent rating agencies (see Chapter 13). But as Annette Austin, of ABN–Amro, suggested, such agencies do not provide rating in connection to operational risk. If and when they do so, independent rating agencies must take into account several factors, including:
Management control of operational risk

There are common elements in different types of risk. Therefore, these risks partly overlap.

- Quality of management
- Soundness of IT support, and
- Other issues that add up to op risk.

This will be tantamount to using an extra dimension than the one so far existing for evaluating credit risk. The exact nature of this dimension will depend on the industry we are in and the nature of the business we do. Operational risk tends to increase with sophisticated financial instruments characterized by many unknowns. And, as business characteristics vary, op risks tend to change. Therefore, to a large measure, each financial institution has its own profile of op risks.

Management risk, said one of the global banks, is our No. 1 operational risk. It represents one out six or seven op risk cases. Next in importance is event risk, including internal and external fraud. The third most critical op risk is technology risk, including:

- System reliability
- Analysis/programming, and
- Model risk.

The executive I was talking to made reference to value at risk (VAR), saying that ‘VAR has clean parameters. But how do you value somebody’s incompetence?’ Banks tend to rely on models for transaction control and end up in a loop. A challenge is that we don’t have enough data to model information technology risk.

This reference has another side. One of the problems with operational risk is that no two institutions look at it in the same way, or classify it in the same manner. This is equally true of constituent parts of op risk, as it is of remedies. Matters are made...
worse because internal control is often wanting, or simply not in place. It is therefore senior management’s responsibility to:

- Identify, monitor and measure operational risk, and
- Put in place an internal control system that assures rapid and accurate feedback.

As my research has documented, a salient problem in operational risk control is that the staff are untrained and lack focus, and/or there is a lack of clear directives. Staff training should include the understanding of what drives people to obey or break the rules put in place to keep operational risk under lock and key. It should also deal with the four reasons reinforcing operational risk:

- People don’t know what is targeted
- They don’t understand how to control op risk
- They don’t want to do it in a rigorous way, in order not to touch other people’s sensitivities, and
- They don’t like to be controlled in what they are doing.

Both focusing and prioritizing are most important. Headway will not be made by attacking all operating risks at once, but rather by selecting the top operational risk issues as salient problems, and bringing senior management’s attention to them. The way to bet is that in the majority of companies the top three op risk issues are:

- Legal risk (see Chapter 3)
- Management risk (see Chapter 4), and
- Information technology risk (see Chapter 5).

If anything is going really wrong in one of these areas, the whole financial institution can fall into hard times. This feeds in to the general understanding that, in every field of endeavor, one of the signs of good management is the ability to identify and deal with the salient factors. As my research documents, in the realm of day-to-day operations there are a good dozen operational risks which can be grouped in the three classes, as shown in Figure 1.2. Here is a description of each.

1. Management inadequacy at all levels, starting with the board and CEO.
2. Quality and skills of professionals and employees.
3. Organizational issues, including separation between front desk and back office activities.
4. Execution risk, including the handling of transactions, debits/credits and confirmations.
5. Fiduciary and trust activities, throughout supported channels.
6. Legal risk under all jurisdictions the bank operates, and compliance with regulations.
7. Documentation (a hybrid between other types of operational risk and legal risk).
8. Payments and settlements, including services provided by clearing agents, custody agents, and major counterparties.
Figure 1.2 Three different groups of operational risk present in practically every organization

9 Information technology risks – software, computer platforms, databases and networks.
10 Security and fraud, including rogue traders (internal op risk), and external op risk sources.
11 Infrastructural services, for example, power and telecommunications.
12 Present and future operational risk associated with innovation and globalization.

This more extensive list contrasts to the event-type classification of operational risk by the Basel Committee on Banking Supervision. The latter includes seven op risks: internal fraud; external fraud; employment practices and safety; business practices, clients, products, damage to physical assets; business disruption, system failures; and execution, delivery, process management. We will talk more about these classes in Chapter 2 as well as in Chapters 6 and 7 in conjunction to capital requirements for operational risk.

No matter how we compose the list of specific op risks that we define and aim to control for our company, we must distinguish between core risks and non-core risks.
Operational Risk Control

– because this is fundamental in identifying salient problems and setting priorities. Core risks are those that an entity is in business to take, for instance:

- Loans are core risks for credit institutions.

Non-core risks are those the firm has no clearly perceived comparative advantage in bearing, yet it is taking them. An example is:

- Speculation through derivatives, as contrasted to true hedging.

This is an example from credit risk and market risk domain, but similar criteria also exist in connection to operational risk. It is the responsibility of the board and the CEO to make a formal determination of what the core risks are, how they should be faced, and how much capital should be reserved for them. My experience tells me that capital reserved for non-core risks may exceed that for core risks – and this helps in rethinking business strategy.

Core risks should evidently attract more attention in terms of perception, study, and evaluation than non-core risks. Core op risks are likely to involve; people, procedures, and systems at the same time. When I say people, I mean not only the persons per se, but also corporate culture, training, experience, transparency, willingness to cooperate and to perform. Procedures involve internal control, accountability, risk appetite, and leverage. The systems are networks, databases, knowledge artefacts, and real-time solutions (see Chapter 5).

1.3 The management of operational risk events

A good way to look at operational risk events is as the result of ill-defined, inadequate, and failed internal processes – or external impacts overwhelming internal defences. To control these happenings we must analyze the causes and effects of incidents which are either at the origin or lead to op risk. As we will see in Chapter 2, proper analysis followed by op risk identification and classification helps in:

- Identifying
- Monitoring, and
- Interpreting operational risk data.

At its basic level, operational risk management is a comprehensive practice comparable to the management of credit risk or market risk. Aptly, the Basel Committee insists that the board should approve the implementation of a firm-wide framework to explicitly control op risk. An operational risk framework must include appropriate definitions that:

- Clearly articulate what constitutes op risk in each bank, and
- Reflect the bank’s appetite and tolerance for operational risk.

Basel also presses the point that banks should make sufficient public disclosure to allow market participants to assess their chosen approach to op risk management. Sunshine is always the best disinfectant. It is also a good way to gain public
Management control of operational risk confidence. Market discipline matters; it is Pillar 3 of the New Capital Adequacy framework (Basel II).

Operational risk control will be that much more effective when the board establishes the proper risk management policies, when we have available a sound methodology, and when our tools are dependable. Also, when the solutions we adopt are characterized by accuracy of execution and timeliness of execution. This requires rich operational risk databases and their on-line, interactive mining.

Typically, operational risk is magnified by globalization, because of crossing of jurisdictional boundaries with different laws, rules and compliance requirements (see Chapter 3). Globalization has many advantages, but it also amplifies business competitions, accelerates customer demands, sees to it that organizational responsibilities are no more clearly defined, and sometimes leads to breakdowns in planning and control. Also protracted changes in management, through musical chairs, increase the assumed operational risk.

As the Introduction brought to the reader’s attention, the management of operational risk cannot do away with the fact that management itself may be part of the problem rather than of the solution. In the late 1990s, a study by the Bank of England – which involved 22 failed financial institutions – found that in 19 of these cases poor management was the top reason leading to bankruptcy. Box 1.1 shows the frequency of the identified reasons for failure.

Box 1.1 Bank of England study on why companies fail based on 22 bankrupt institutions (some failures were due to two or more reasons)

Six top reasons in order of frequency:

1. Mismanagement
2. Poor assets
3. Faulty structure
4. Liquidity
5. Dealing losses
6. Secrecy and fraud

Total management-oriented events:

No. 1 + No. 2 + No. 3 = 39 cases

Total financially oriented events:

No. 4 + No. 5 + No. 6 = 18 cases

Hence:

Mismanagement reasons 39/57 = 68.4% of all cases
Financial reasons 18/57 = 31.6% of all cases
It is not surprising that management-oriented reasons exceed those of a financial background by a ratio of 2:1. The board, the CEO, the executive committee are the parties that decide on the management of assets and liabilities, and on assumed risks. If the bank or the insurance company finds itself with poor assets, it is management's fault, not an accidental financial mischance. A similar statement applies with operational risks being taken, like cutting corners:

- On legal issues, and
- In terms of compliance.

Not only many operational risks find their origin in management decisions, but also several among them are interconnected. This is shown in Figure 1.3 using four operational risks as an example. Notice that management intent can be found in the background of all four, expressed by means of:

- Fundamental principles
- Decisions being taken, and
- Rules and bylaws.

Principles, decisions, and rules are governing the strategy, policies, and procedures of an institution. Therefore, management decisions, and the reasons behind them, must be analysed for consistency. Fundamental principles are more important than rules, because people engineer their way around rules. However, rules can be audited; which

\[\text{Figure 1.3 The top four operational risks influence one another in a significant way} \]
is not possible with fundamental principles (more on auditing and internal control in Chapter 2).

One of the basic principles to be observed in connection to the control of operational risk is materiality. As an accounting principle, materiality means relative importance – a concept critical to all procedures. In operational risk control, materiality is a challenge because of difficulties in weighting losses from op risks against the costs of their control within and across:

- Product lines, and
- Business units.

The correlation between operational risk type and loss experience might differ significantly depending on products, processes, and entities. Still, because of scarcity of operational risk data many banks collaborate with one another in establishing an op risk database. At the same time, however, several banks have adopted a two-tier strategy:

- Short- to medium-term solutions with an interim, coarse-grain methodology, and
- Longer-term solutions at greater granularity, using op risk indicators with predictive models (see Chapters 8 and 9).

Tier-1 banks have also established a policy of post-mortems, which helps to appreciate whether operational risks have been properly tracked – and at which cost – including op risk distributions before and after modeling; the shifting of distributions to lower frequencies or lower impact; and the savings vs cost analysis which can tell whether we apply the right level of control for each operational risk.

Say that we decide to go after operational risks in a back office environment. Then among our priorities should be to match confirmations, check undocumented trades, minimize litigation costs, eliminate handling errors, protect from reputational risk. Auditing IT applications and projects is an integral part of this effort:

- What’s their track record?
- How late are they?
- How secure are transactions over networks?
- How much does [a given service] expose our organization to operational risk?
- What’s the cost and benefit of the controls we apply?

In conclusion, while everybody agrees that operational rules must be managed, their steady and focused control has a price. It does not come free of cost. We must therefore optimize, and this means deciding between absorbing some losses, or establishing tighter control over operational risk events (see Chapter 8 on high and low op risk impact).

1.4 Supervisory response to operational risk

Supervisory response to operational risk is expressed through increased monitoring, the requirement that companies take remedial action, and provision of additional capital to face op risk aftermath. The Basel Committee has advanced some standard
models estimating capital needs for op risk. These are discussed in Chapter 7. But Basel also promotes more sophisticated approaches, such as loss distribution and the scoreboard.

By all evidence, capital requirements for operational risk will be subject to frequent redefinition. This is the more likely as credit risks and market risks may be morphing into operational risks. For instance, the management of collateral was associated to credit risk. Now it becomes part of operational risk. This redefinition is sure to impact on Pillar 1: Capital Adequacy, as seen from the regulators’ capital requirements viewpoint.

Experts participating in my research pointed out that as the operational risk landscape becomes better understood and more clearly defined, questions will also be posed on the impact of op risk on Pillar 2: Prudential Supervision. By all evidence, this will include the growing importance of three underlying principles:

- The bank’s own responsibility
- Supervisory evaluation, and
- Supervisory intervention.

To answer prudent supervision requirements in an able manner, old business lines, for instance the branch office network and loans, need to be rethought in operational risk terms. Beyond this, new implementations, like e-banking, require a structured operational risk analysis, as well as a factual cost and risk versus benefit study.

As these references are documenting, the rightsizing of operational risk exposure poses several challenges. Resources allocation that supports and sustains market discipline – which is Pillar 3 – is one of them. Another example is a realistic evaluation of the challenge of avoiding business disruption. In conjunction to the challenge of terrorism, Chapter 14 elaborates on the challenge of business disruption and needed countermeasures.

Here is the concept in a nutshell. Because in the first years of the twenty-first century terrorism has become a real threat, supervisors are increasingly concerned about the aftermath of operational risk connected to business disruption. Management should not lose sight of the fact that because of globalization and high technology, financial markets work around the clock.

- Major business disruptions can become killer risks.
- Just-in-time supply chains can be put on hold.

This is one of the cases where credit risk, market risk, and operational risk correlate. As business confidence gets a beating, financial flows can dry up. Intangible assets, too, can be at risk, because killer events provoke herd-like:

- Runs on liquidity
- Flights from damaged assets, and
- A high degree of volatility.

Therefore, a critical evaluation of operational risks requires stress scenarios and drills, as well as a broader perception of possible consequences. To properly evaluate
business disruption we must attach great importance to system performance, not just to standalone products and services. An important pattern is the transition from high frequency/low impact (HF/LI) to low frequency/high impact (LF/HI) events (see Chapter 8).

Supervisors are also paying growing attention to catastrophic, or killer operational risks. These should be given priority. Relatively large size killer events existed before 11 September 2001 (9/11). Some of them have been financial; others are operational. But as we will see in Part Three, 9/11 has changed the supervisors’ and the financial industry’s perception of business interruption. Questions pertaining to this issue are:

- How does a company survive when some of its key personnel have been killed?
- How can a firm operate when its computers, networks, and databases are destroyed?
- Which back-up should be in place in case the main premises are put out of commission?

Some aspects of business interruption might be insured, but because this is a new major operational risk it will be difficult to satisfy the insurer that everything abides by the contract – or, for that matter the regulator. Regulators appreciate that critical assets like top management could be rapidly shattered, and recovery may not be easy. Yet, confidence in management drives:

- Future investments
- Product innovation, and
- Customer trust.

This is an issue where the interests of regulators and of the regulated entities support one-another. Innovation, imagination, and flexibility are not only vital to business survival; they are as well a cornerstone to our ability to face operational risk challenges. ‘One does not plan and then try to make the circumstances fit those plans,’ said General George Patton. ‘One tries to make plans fit the circumstances. I think the difference between success and failure in high command depends on the ability, or lack of it, to do just that.’

For his part, Sam Walton, one of the most successful businessmen of the post-World War II years, described in the following manner the way his mind worked: ‘If I decide that I am wrong, I am ready to move to something else.’ The operational risk manager’s mind should react in a similar way. When the current op risk control method has not been able to deliver as promised, then the manager should change the method and the tools.

As a way of bringing together what has been discussed in this section, Figure 1.4 outlines 13 vital steps in operational risk management. They integrate the input received in my research and, between them, they constitute a better, more adaptable method than the one used by each individual organization.

The pattern in Figure 1.4 is a feedback mechanism. Operational risk results and assessment – both short-term and longer-term – must be fed back to senior management. They should also be fed into a database for future datamining. Agents (knowledge artefacts)\(^1\) must steadily examine the evolving op risk statistics as well as the key indications. Stress tests should be done:
By changing the parameters of topmost op risks, and
By altering the control structure, and/or nature of controls.

As we will see in connection to advanced methods for operational risk control (Chapter 8), experimental design can help in analysis of variance when more than one factor changes. The existence of a control group permits the better appreciation of the impact of new tools or methods. It also makes op risk reports to senior management and the supervisors more factual and better documented.

1.5 A strategy for bringing operational risk under control

The key elements affecting operational risk will be better identified and controlled if we are able to assure early involvement by senior management. As we will see in Chapter 2, the proper operational risk identification is a senior management job, even if technologists and mathematicians are doing the legwork. The analysts should be responsible for examining op risk behavior and studying correlation between different operational risk types – but the final decision is management’s responsibility.

In a nutshell, the strategy for operational risk control is described in Figure 1.5. Prerequisite to reaching the goal is the appropriate layout of analytical processes which permit getting to the core of the matter. Setting limits, controlling limits, and
The able handling of operational risk needs both analytics and rigorous control taking corrective action are the means for establishing a valid system of checks and balances. For every entity:

- The definition of operational risk is strategic.
- The analysis is part of the tactical approach to op risk control.

Analytical activities start with understanding the op risk issues proper to our enterprise, checking to make sure these represent the core of compliance, then following up with monitoring and measuring. To plan for risk assessment, the analysts should learn from control weaknesses that have been identified in the past, establishing the overall risk profile at two levels of reference:

- Restructuring of current operational risk control concepts and procedures, and
- Designing and implementing a new, more effective op risk management system that works in real-time.
This effort will be more successful if the risk control process becomes an integral part of overall business management, with outputs from op risk assessment incorporated in the design of our products and processing channels, existing or under development. As cannot be repeated too often, the early engagement of senior management assures that operational risks are considered as an integral part of the overall command and control system of the enterprise.

A company-wide approach able to cover operational risks where they exist, will evidently require different project teams working in parallel to one another. The downside of such a holistic approach is that operational risks may be identified and handled in heterogeneous ways in the different business units of the organization. Also, that the company may fail in establishing appropriate links between different classes of exposure.

The answer is co-ordination by senior management, keeping in perspective the fact that different business units may have a unique exposure profile and control framework, as well as heterogeneous exogenous factors. These differences can be effectively handled through operational risk classification and identification, as is explained in Chapter 2. The strategic prerequisite to this approach is that an enterprise-wide op risk control program is examined under all possible angles. Among crucial queries are:

- How clear are the objectives of our program?
- What is the overall level of certainty and uncertainty?
- How much experience do we have with this type of program?
- What is the potential to be released from staff upgrades?
- What is the degree of impact upon the customer base?
- How much change to existing IT solutions will be necessary?
- What is the degree of the legal and regulatory implications if we fail to take control of our op risks?

A strategic view of operational risk control will pay considerable attention not only to organizational issues but also to all our products and processes, the quality and accuracy of internal control, the calibration of the risk management system, as well as risk mitigation policies. It will also steadily evaluate the continued effectiveness of op risk controls, addressing issues that are both internal and external to our enterprise. For instance,

- Contractual terms with business partners, and
- Legal challenges, including creative accounting and creative marketing.

Reputational risk resulting from failure to control operational risk(s) should always be at the top of the list of priorities. Barings was not the only institution brought to its knees because of op risks, lax internal controls, wanting organization, and conflicts of interest. Another example is the British & Commonwealth (B&C) merchant bank, which in its day grew very fast under the aegis of its leader. One day, the auditor of the B&C discovered that in one of its subsidiaries, Atlantic Leasing, there was a hole of £800 million ($1.2 billion). Atlantic Leasing was in the rental business. The mainframes it rented depreciated very fast, but the company kept these mainframes in its books at full value. This beefed up the assets, but at the same time it opened a
gaping hole in management control, due to *creative accounting*. One of the frequent op risk scenarios is that:

- Fair value is often discarded in an effort to make the assets look attractive, and
- Senior management is happy enough with the good-looking fake figures, and therefore it does not take corrective action.

Generally, creative accounting is not considered to be fraud, yet this is precisely the case. The aftermath is disastrous both to the company which practices creative accounting and to its business partners. Many firms who had delivered goods and services to Atlantic Leasing got burned. One of them, a service bureau, was owed £600 000 ($900 000). After the liquidation proceedings, it got 3 pence to the pound.

Because with operational risk all stakeholders are at the frontline, regulators have every interest in looking into the op risk control practices of the entities they supervise. Mid-October 2001, the Financial Services Authority was criticized in a report by Ronnie Baird, its own head of internal audit, for failing to spot key problems at mutual life insurer Equitable Life, in January 1999. The report said that the FSA should ‘have recognized sooner a significant weakness in Equitable’s solvency position.’

- Basically, this has been credit risk, but record-keeping, the analytics, and transparency are operational risks.
- Also an aspect of operational risk has been the fact that not all drawdown policy holders of Equitable Life were experienced investors.

The misrepresentation of product characteristics is a con game, and therefore an operational risk. Many clients of the mutual life outfit were mis-sold drawdowns without understanding the risks involved. At Equitable Life, the management set aside £200 million ($300 million) to pay investors who were taken for a ride.

Sir Howard Davies, chairman of FSA, has had his salary cut by his board for failures in the way the authority he heads handled the collapse of Equitable Life. The internal audit report also criticized the FSA for failing to appreciate fully the danger that Equitable could lose the costly legal battle over its treatment of guaranteed annuity rate policies. In July 2000, the loss of the House of Lords appeal left Equitable with a bill of £1.5 billion ($2.25 billion), plunging it into financial crisis.

The careful reader would take note that in spite of its precarious financial condition, Equitable Life was allowed to continue operating, even if it failed to meet regulatory solvency requirements set by the Financial Services Authority. By mid-November 2002 the Equitable warned that the financial uncertainties it faced could involve painful actions – like the announced cut of 30% on with-profit annuities affecting the pensions of 50,000 policyholders.

Bringing assets and liabilities back into line is sure to involve major policy value reductions and bonus cuts. By November 2002, the value of Equitable had dropped to about £14.5 billion from £18.6 billion at the end of 2001. Equitable Life also revealed that its fund for future appropriations (a measure of how much capital it has in excess of its liabilities) fell to $382 million from £1.1 billion at the end of December 2001.
While these are credit risks to Equitable’s policyholders, for many of the latter the ordeal started with an operational risk: creative marketing. Because it rests on false premises, creative marketing is just as deadly as creative accounting, and it should be sanctioned by top management. Six Sigma is a powerful tool in the control of this operational risk. Chapter 8 explains why.

The examples I have just given underline some of the less known aspects of operational risk. Solutions must be polyvalent: strengthening management, training all personnel, studying emerging best practices, developing and using advanced measurement methods, as well as instituting sophisticated controls. Among other approaches we will follow in this book are doing risk mitigation through insurance, developing contingency plans, providing consistency in operational risk management, and considering operational risk along global business lines.

1.6 Operational risk must be managed at all organizational levels

Operational risk is present both at headquarters and at all business units, even if some of these units are more exposed to op risk than others. Creative accounting is (usually) a headquarters practice. Creative marketing often happens at the fringes, near the customer base. Therefore, the identification, classification, monitoring, measurement, and management of all operational risk types must be done at all organizational levels establishing:

- Dependencies, causes, enablers of op risks.
- Possible threats and control failures.
- Countermeasures and their effectiveness.
- Responsibilities for action plans to bend the curve of op risk growth.

After the basic homework is done in operational risk classification, identification, setting of limits, and analysis of cost-effectiveness of countermeasures, a company-wide system of traffic lights will help. The guidelines should be set at headquarters, but each business unit must be part of the picture in deciding on op risk priorities, because it is its responsibility to identify and manage operational risks.

Figure 1.6 shows an organizational structure which abides by the principles outlined in the preceding paragraphs. Senior management is accountable for global operational risk identification and control. It is assisted by a headquarters unit that establishes op risk control plans, elaborates the standards, and supervises local operations and functions. Headquarters should provide:

- Norms
- Analytics
- Guidance, and
- A system of merits and demerits.

Quantification and qualification of company-wide operational risk is a headquarters activity. But as the British Bankers Association was to say, you cannot quantify
everything connected to op risk. Much will have to be done on a qualification basis, and this increases the need for proper identification and classification of operational risks, discussed in Chapter 2.

The qualification of operational risk is specific case-by-case. This means there is no consistency bank-to-bank. But we should not be adverse in trading, up to a point, consistency for relevance. Relevance is very important in all three pillars of the New Capital Adequacy Framework.

- With Pillar 1, operational risk has a cost
- With Pillar 2, the regulator will be on our back, and
- With Pillar 3, op risk can lead to reputational damage.

While we can adopt an operational risk control methodology from another bank, or other entity selling such services, and get an idea about pitfalls based on other banks’ experiences, we should not use the same solutions another bank uses down to every detail. Copycats have no place in the control of operational risk. The advice embedded in the following eight items helps in providing a unique approach and competitive advantages associated to it:

- Have a sound methodology for operational risk control.
- Emphasize management risk and ways to avoid it.
- Pay significant attention to legal risk (see Chapter 3).
- Understand how and why information technology is a major operational risk (see Chapter 5).
- Distinguish between high frequency/low impact and low frequency/high impact events (see Chapter 8).
- Provide analytical approaches to op risk control, to help with scoreboard developments (see Chapter 9).
- Use plenty of case studies from banking and insurance to demonstrate the attention operational risks deserve (see Chapters 10 to 14).
- Integrate cost control into the operational risk perspective (see Chapters 15 and 16).
Some of the case studies the reader will find in Part Three and Part Four demonstrate how other companies have compounded their operational risk problems by adding to their troubles through moves that are both unwise and ill-studied. Not only do creative accounting and creative marketing render a very bad service, but so also do other moves that might provide temporary relief but turn into longer-term liabilities.

For instance, triangular agreements are poison to operational risk control. My favoured case study in this regard is what happened with Sainbury and its IT. That Sainsbury had to improve the look of its balance sheet and that’s why it went into the pains of leveraging its IT, was only a hypothesis when this deal was done. It became a certainty when on 7 April 7 2002, it was announced that Sainsbury intended to underline its recovery with a trading statement showing that it is gaining market share from rivals such as Tesco and Safeway, after having chosen a strategy of concentrating on its ‘core activities’. Part and parcel of this strategy was getting rid of:

- The company’s real estate, converted from ownership to leasing, and
- The company’s information technology, outsourced wholesale to a consulting firm.

In my book, both real estate and IT, and most particularly IT, are core business of a merchandiser. Advantages to the balance sheet by getting rid of them are illusionary, and surely temporary. The aftermath of assuming operational risks by denying reality will come back and bite the outsourcer, while on the insourcer’s side operational risk has plenty of opportunity to get out of hand.

In fact, despite Sainsbury’s improved sales figures, some analysts were still unconvinced by its recovery strategy. Philip Dorgan, a long-time critic of the stock, has pointed out that, while Sainsbury has been good at generating extra sales, it has still to prove it can grow profits as quickly. Ian Macdougall, food analyst with Williams de Broe, said he was not wholly persuaded by Sainsbury’s recovery; neither was he quite sure what the formula is, as in his opinion the company was coming off a very low base and it is hard to sustain momentum. For my part, I would consider the op risk associated with losing control over IT as being the merchandiser’s soft underbelly.

Loss of control over operational risk can have serious spillover, as the Exxon Valdez case documents. The 1989 Exxon Valdez disaster has been a major operational risk. Exxon’s tanker ran aground in Prince William Sound, causing the largest oil spill in history (at that time). The damage to Exxon included not only the financial cost of the environmental clean-up and the legal risk connected to civil and administrative liability, but also the potential impact of oil loss on the company’s existing oil hedges.

- Without the physical oil itself, any hedge suddenly became a source of risk.
- With this, the effect of the Valdez accident went beyond legal risk and immediate financial risk, into risk associated to hedging.

What all of the foregoing examples have in common is the understanding that operational risk has the potential for loss due to top management decisions based on
wrong bets (which is part of management risk), eventually resulting in operational deficiencies characterizing control processes or systems. By contrast, well-managed companies attempt to mitigate operational risk by:

- Maintaining a comprehensive internal control, and
- Employing experienced, well-trained dedicated personnel.

This is the right direction in operational risk control, but while necessary, by itself it is not sufficient. For each functional area deemed to be potentially of medium to high risk, senior management should perform a rigorous risk self-assessment. Its goals must be to evaluate the appropriateness of internal controls policies and systems; perform operational risk tests by type and business line, and provide emergency procedures as well as recovery plans.

1.7 Turning operational risk control into a senior management tool

Today, practically nobody has in place a system that can make operational risk control a senior management tool. Most companies just try to hedge op risk for the reserve bank, or other supervisory authorities. This is tantamount to being at the side of the problem, not at the heart of it. Failure to focus is one of the basic reasons why we will have to redo everything in operational risk control by the middle of this decade.

By being the most classical of all op risks, fraud can serve as an example of what I just said. The reality is that few companies think about fraud until they have suffered its consequences. Most institutions believe prevention is a good idea, but they never invest in it the time, money, and effort which is necessary – or use imagination and ingenuity.

When senior management makes a frontal attack against fraud, it puts fraudulent persons on their guard. By contrast, a better policy would be to emulate the successful island-to-island hopping strategy of General Douglas MacArthur, during World War II in the Pacific. MacArthur always moved against the strategic flank of the Japanese army, rather than fighting for every foot of land occupied by its tenacious and fanatical soldiers.

An island-by-island offensive against fraud will account for the fact that fraud is both an internal and external problem. Fraud experts point out that most financial fraud, even when organized by outside individuals, requires some cooperation from inside the company. Surveys suggest that more than 50 percent of all frauds are perpetrated by people within the company.

- Internal fraud is fed by a non-transparent culture, where people are not trained in its prevention and are not encouraged to find out what compliance is all about.
- Because many fraud prevention methods are superficial and substandard, in many cases detection is by accident, rather than as a result of regular controls.

The irony is that the increased use of information technology inside organizations has provided more opportunities for fraudsters to steal from companies. Fraud
prevention can be encouraged by creating an environment where people feel comfortable speaking up when they feel something is not right. That's the flank of fraudulent people. Datamining aimed to uncover fraud patterns can also be instrumental in fraud prevention.

As Dr Brandon Davies, of Barclays Bank, aptly suggested, credit institutions have a wealth of data on fraud and other classical operational risks which they do not truly exploit. Yet we have today the technology, including knowledge artefacts, which permits accurate and effective datamining, leading to proactive solutions to fraud detection.

We can capture a lot of operational risk by using information available in the back office, Davies suggests. Such information accumulates over the years, but it is rarely exploited in an operational risk oriented manner. Brandon's very significant experience leads him to the concept that a good way to improve operational risk control is to:

- Co-involve senior management in clarifying responsibilities for operational risk
- Understand back office performance within the organization, and
- Obtain a commitment on operational risk awareness, monitoring, measurement and control.

A good question is how a system along these lines of reference can be staffed. Some organizations have one person dedicated to operational risk per business line, responsible for giving advice and getting feedback. They use skilled people to review current practices and identify weak links in operational risk; and they require that a new product approval committee looks into a new product's operational risk.

Beyond this, I would suggest developing and implementing radar charts that map every manager's performance in terms of operational risk control. Figure 1.7 presents an example. Its focal point is a one-year evolution in op risk control, but the crucial variable being measured might also be a different one.

Well-managed companies also hold an annual operational risk forum, organized by the corporate operational risk office. This leaves open the possibility of critical evaluations and post-mortems – both being part of proactive approaches. Critical evaluations are necessary, for example, because while technology provides valid means for control of operational risk – if we use them the proper way – it also creates new ground in which op risks can grow.

For instance, the vulnerability of corporate computers to external hackers and viruses has opened new opportunities for fraud that were unavailable at an earlier time. The good news is that knowledge engineering used in conjunction with real-time systems has increased the capability of investigators to work out what happened and where it took place. In this regard, an excellent example of the use of knowledge engineering for operational risk control is in the domain of fiduciary risk, which has the potential for financial or reputational loss through the breaching of fiduciary duties, including:

- Individual and corporate trust
- Investment management custody, and
- Cash and securities processing.
Companies attempt to mitigate fiduciary risk by establishing procedures to ensure that obligations to clients are discharged in compliance with legal and regulatory requirements. In this connection, guidance and control should be provided through the board’s fiduciary risk committee, but the nuts and bolts for operational risk control will be the knowledge artefacts working on-line on the bank’s network.

Both the strategic and the tactical approaches are crucial. Senior management co-involvement is most critical because the extent of operational risk exposure being taken may go unnoticed and unchecked until it reaches a level that represents an unacceptable threat to the company’s operations. On the other hand, to be effective the operational risk control framework that is established must be based on a whole range of methods of analysis, because:

- There are many different types of operational risks, which can be both internal and external, and
- They often go unnoticed until top management gives the message that everybody is accountable for operational risk control.

This brings our discussion back to this section’s heading. Making op risk control a management tool means both personal accountability and the ability to challenge the obvious. Neither is self-evident, and their absence is a distortion built into today’s system. One of the results of such distortions, for example, is that commissions are
seen as extra compensation resulting from taking operational risk at the bank’s expense. The failure of NatWest Markets because of options mispricing provides the evidence.

Challenging the obvious has prerequisites. The first in line is the board’s and CEO's co-involvement. The next in importance is analytics: for example, finding peaks in the distribution of op risk, like those due to monthly and quarterly reconciliation. Hypotheses have to be made and they have to be tested. For instance, a hypothesis is that of assuming that in a back office and middle office environment small errors happen every day, but not all have the same impact. We must divide errors between:

- Minors, or those which are almost acceptable, and
- Majors, which have to be thoroughly controlled through a system of merits and demerits.

Critical to turning operational risk control into a senior management tool is our ability in developing and using early indicators. There should be a flashing light for all op risks to guide the hand not only of middle managers but also the CEO and the board. Audits must get into the act and audit tracking can be enhanced through clearly defined early indicators. This subject is treated in Chapter 2.

Let me close this chapter with a reference to contingency planning in connection to operational risk control. Operational risk control policy, according to the Financial Services Authority (FSA), is guidance on high level rules. The FSA’s stated aim is to highlight issues for consideration, not be prescriptive. Policy developments cover:

- Legal requirements
- Management of people, including accountability
- Caliber of staff
- Availability of staff, including what to do if there is unavailability
- Management of processes and systems, including IT
- External changes, including effect on business continuity
- Outsourcing of services (see Chapter 5), and
- Insurance coverage (see Chapters 10 and 14).

As the reader will appreciate, an important consideration underpinning all eight points is preparedness for unavailability of vital services, which can disrupt even the best laid business continuity plan. This consideration focuses both on the company’s own personnel and on dependability of supply chains and of outsourcers, which impacts upon business continuity.2

In regard to outsourcing, FSA advises setting minimum targets for business partner performance, as well as making appropriate contingency arrangements – given that contingency planning is an integral part of an operational risk control policy. FSA also underlines that operational risk disasters and their aftermath are most definitely senior management’s concern.

Disaster containment represents a major challenge both in the longer-term and in day-to-day management responsibilities, because while disaster planning is longer
term the availability of disaster recovery means and methods must be instantaneous. The longer-term policy should reflect the fact that:

- All firms are exposed to operational risk, and
- The breadth of operational risk impact can be wide.

To be effective any disaster recovery policy needs to assure that communications channels are always open, recovery and damage control goals are explicitly stated, and disaster recovery training is an integral part of every manager’s responsibilities. All this comes over and above obtaining full support by senior management.

‘Ultimately what are we looking for?’ asks Lisa Wild of FSA. She answers her own query by saying that FSA’s goals in this domain target senior management buy-in; place emphasis on sound planning and control practices, not just minimum compliance; and require firm understanding of operational risks and of the way to control them. Also, FSA guidance calls for properly documented executive processes. All this together makes a sound operational risk management culture.

Notes

2 Classification, identification and monitoring of operational risk

2.1 Introduction

The many types of operational risks we have seen in Chapter 1 cannot be successfully controlled until they are properly recognized and identified. Only then can they be monitored and measured, with measurements datamined in real-time. (Manual approaches to database searches are too slow, too costly, and ineffectual in terms of required timely control action.) Therefore, prior to being able to exercise control over operational risks we must do our homework in their identification and classification.

Tier-1 banks appreciate the reasons for an unambiguous identification of operational risks. Experts, however, also point out that many op risks just don’t sign up as such, because they are booked under other titles. For instance, Chapter 1 noted that collateral is usually considered to be credit risk, because that is how it has been handled until recently. But this is changing:

- In the coming years, there will be a huge transfer of issues from credit risk and market risk to operational risk.
- This transition will make data collection more difficult, unless we have in place a classification and identification system that assists in monitoring.

An operational risk classification and identification solution can in no way operate independently of the goals we set for op risk control. The latter include the monitoring, data collection and data analysis strategy we decide to follow. Data collection must be detailed and, to keep costs low, it should be largely piggy-backed on other systems, like:

- Accounting,
- Financial information.

The right policy would aggregate and consolidate data collection solutions across business lines, mapping business lines to regulators’ definitions, and our own aims. It will also create an appropriate verification process for management reporting and disclosure. Incident reporting on op risks must make sure that:

- The message is clear
- It leads to corrective action, and
- It leaves a historical trace for further analysis.
This is consistent with the fact that, as we gain experience and enrich our database, operational risk studies should target a significant detail. We are not yet there. Prior to reaching the necessary level of detail, we must assure that op risk studies address salient problems, a process assisted through classification and identification.

Regarding data collection *per se*, operational risk data must be captured at the source. This is not current practice, therefore, according to some estimates 30% of op risk entries are wrong. Wrong classification is co-responsible for errors in the operational risk database.

The polyvalence of operational risks, and its aftermath, must evidently be taken into account. I do not subscribe to the view of some experts that: ‘You have to have a single operational risk scoring framework.’ This is nonsense. There are so many types of op risks that we *cannot* have a single risk scoring frame of reference. (More on this in Chapters 8 and 9.)

But we can increase op risk sensitivity across the board. This is done by establishing correlation between risk indicators and actual loss experience. Risk sensitivity is upheld by sound measurements, a loss-gathering infrastructure, models, systems and procedures for their use, the ability to do stress testing, and periodic reviews of methodology and tools. All this must be done in a way that is consistent with directives by regulators.

2.2 Basel Committee directives in understanding operational risk

There is no way of avoiding operational risk in a service economy, but there are sound strategies for damage control. A fundamental understanding of both the type and quantity of operational risk taken by credit institutions, brokerage firms, insurance companies, and other entities is essential, as business and industry face up to increasingly demanding operational-type challenges. Because most financial institutions are ill prepared for operational risk control, the Basel Committee on Banking Supervision has provided the flexibility of different approaches.

- From the so-called ‘basic’ (which is too elementary),
- To the so-called ‘standard’ expressed in a matrix of seven risks and eight banking channels (see section 2.2 and Chapter 7), and
- To three advanced methods, the most sophisticated being known as the ‘scoreboard’ (see Chapters 8 and 9).

Financial institutions which have the know-how and skill to develop scoreboard solutions go well beyond the classical view of operational risk mainly related to fraud, payments, and settlements. This is precisely the approach this book takes. Bringing into perspective many different operational risks underlines the need for a methodology. The methodology I am suggesting is:

- To start with a classification, which helps to identify op risks
- To employ a battery of tests in tracking them
- To use several advanced tools in analysing them, and
- To develop methods which are open, flexible, and expendable to bring them under control.
The overall concept behind this approach is expressed in a nutshell in Figure 2.1. Notice that op risk control is three-dimensional; it is ineffectual in only one dimension because solutions are not linear. Costs matter (see Part 4). Resource allocation and cost-effectiveness must always be accounted for. Internal control is at the vertex. Credit institutions that are admired for their caution and their ability to control exposure:

- Have in place a rigorous system of internal control, and
- Their management is characterized by a deep sense of personal accountability.

The Basel Committee has defined an appropriate operational risk management environment in the following terms. Operational risk strategy must reflect the institution’s tolerance for risk; the board should be responsible for approving the basic structure of managing op risk; and senior management must have the responsibility for developing op risk:

- Policies
- Processes, and
- Procedures.

Aptly, the Basel Committee on Banking Supervision underlines the fact that internal control must enable senior management to monitor the effectiveness of all op risk
checks and balances – while failure to address present operational risks increases the likelihood that new op risks go:

- Unrecognized, and
- Uncontrolled.

There are plenty of new sources of operational risk, as the reader will recall from Chapter 1. Some of them come from the fact that more and more financial institutions engage in risk mitigation techniques, which produce new sources of op risk. Credit derivatives\(^1\) and asset securitization are examples of instruments designed to mitigate credit risk, but they bring along a share of operational risks because:

- The pool may be heterogeneous, and
- The rating of the tranche may be misquoted.

Credit derivatives, asset securitization, and other financial instruments which became popular in the 1990s are largely technology-enabled activities. The astute reader is already aware of the fact that while technological innovations must be steadily incorporated into op risk management, technology also engenders its own operational risks. One of them is that the viability of integrated IT systems is put under stress by:

- Mergers
- Spin-offs, and
- Consolidations.

Basel does not say so, but all three of these points increase operational risk. Among newer banking activities, growth in Internet commerce brings up other op risks with many aspects not yet well understood. Examples are:

- The rebirth of external fraud, and
- A greater than ever challenge to system security.

Matters are not helped by the fact that, sometimes, in search of profits banks seem eager to assume an inordinate amount of operational risk even if this leads to reputational risk. This is the case with what is now called ‘guessing game derivatives’ commercialized as investments. These essentially amount to a big bank casino and, in a regulatory sense, they should require a gambling license – over and above the necessary risk management procedures which are not in place.

In early October 2002 Deutsche Bank and Goldman Sachs began offering investors this casino-type gambling. The banks are giving their clients a chance to profit by guessing through call options the level of American non-farm payrolls.\(^2\) Other guessing games focus on the manufacturing index, and figures for retail sales. All this is heralded as another great hedge. It is not. No more are those instruments targeting:

- Financial market risk such as falling share prices
- Guessing the likelihood of borrower default, or
- Betting on changes in $/euro, $/yen and other exchange rates.
Apart from being nonsense in the investment sense, these involve an inordinate amount of legal risk (see Chapter 3). Clients are very likely to sue in court because very few gimmicks really work. For instance, attempts by banks to offer derivatives on property prices and on inflation have failed.

The operational risk embedded into pseudo-novel, untested, and largely misunderstood instruments is so much more pronounced because most of these gambles are masquerading as hedges. Yet, guessing the level of non-farm payrolls, for instance, has greater similitude to horse racing than to investing. As a business it is not serious, and it should not be promoted by banks to trap egg-headed investors.

There is a huge amount of reputational risk and operational risk embedded into this sort of silly business, beyond operational risk associated with more classical activities, like clearing, payments, and settlements where technology (and its risk) also plays a key role. For example, the provision of payments services includes:

- Clearing of trades
- Payments proper, and
- Delivery of assets (settlements).

In every one of these aspects, payment services require the same type of skills banks use in lending: fraud prevention, credit analysis, and ability to retrieve funds improperly sent. Besides this, payment services are expensive; they are the largest cost component in securities trading. Their operational risks, which include security breaches, add significantly to the cost of transactions, and pose the challenge of payments efficiency – hence of technology.

2.3 Classification of operational risks and the Basel Committee

Operational risk presents a complex picture, and the Basel Committee has given guidelines for its identification. Basel is suggesting that *op risk identification* is critical to the development of control solutions and *risk indicators* are a ‘must’. Risk indicators are statistics and metrics (often financial) that provide insight into the op risk’s impact. Furthermore, Basel says, identification should include determination of which risks are controllable. Senior management must estimate procedures necessary for measuring, monitoring, and controlling op risk, including:

- The event’s probability (high frequency, low frequency), and
- The event’s potential size of loss (high impact, low impact).

Overall, this approach is sound and, by all likelihood, it will constitute the mainstream methodology for handling operational risk. Where I have reservations is the level of detail to be followed by financial institutions for the clarification and identification of operational risk both:

- In terms of the bank’s product lines, or channels, and
- In connection to the number of operational risk categories as well as their component parts.
As we will see more extensively in Chapter 7, the Basel Committee has advanced five alternative approaches for the calculation of capital reserves connected to operational risk: basic, standard, and three advanced measurement approaches (AMA); Basel’s standard approach uses a matrix of:

- Eight business lines, and
- Seven operational risks.

As shown in Figure 2.2, this matrix is not adequate for sophisticated banks. AMA permits more degrees of freedom, but though credit institutions choosing the advanced measurement methods are given nearly free rein to develop their own identification and classification system, there should be a downwards compatibility with the standard method. This is provided by the Chorafas system, presented in section 2.5.

![Operating Risk Matrix](https://via.placeholder.com/150)

Figure 2.2 Matrix of standard business lines and standard operating risks

Behind this statement lies the fact that a consistent classification and identification of op risk helps in the definition of regulatory capital in a manner permitting cross-industry comparisons. The bottom line is that compatibility is measured in *money units*, but money becomes the common denominator in operational risk control if, at a chosen level of comparison, the classification/identification system used by different banks is homogeneous enough to provide a solid reference base.

Another fundamental reason for downwards compatibility is statistics. As I never tire repeating, my fifty long years of hands-on experience with computers and models documents that in simulation of real life situations, which is what we aim to do with operational risk control,

- 80% of the problem data, and
- Only 20% of the challenge is algorithms and heuristics.
Chapter 1 has made reference to cooperative efforts among major banks – which otherwise are competitors – aimed to establish, by working together, a richer operational risk database than each could do on its own. Today, operational risk data are in short supply, though some exceptions do exist here and there.

- Cooperative databases will not succeed, unless classification and identification of op risks are homogeneous.
- At the same time, credit institutions should have the freedom to choose their own methodology rather than having to live with a straitjacket.

The parallel code system presented later in the chapter reconciles the otherwise contradictory statements made by the above two points. It also allows us to bring into the solution a significant amount of detail, which goes beyond the taxonomical approach. This is done through ‘further definiens’, whose use is explained in the next section.

A detailed matrix of operational risks corresponding to product lines, products, and processes should not start with money but with functions and events. Structural aspects are unavoidable, like the distinction made between ‘retail banking’, and ‘other commercial banking’, in Figure 2.2, but as sections 2.4 and 2.5 emphasize,

- The classification must be generic, and
- It should go all the way to the most elementary op risks.

This is indeed a challenging job requiring lots of homework and skill. Using money as a common denominator would superficially simplify the work to be done, but in the longer term it will be counterproductive. Therefore, it should not happen at the outset of a classification and identification study because it will bias the results.

Finally, as we will see in Chapter 7, a pivotal point of Basel in computing capital requirements for operational risk is gross income. However, a big question in connection to using gross income as proxy concerns the recognized but not yet realized gains and losses. As the computational system is refined, these will have to be included in gross income because at their origin are derivative financial instruments, which involve legal and other op risks.

Other critical problems to be considered, in an op risk solution, are errors in measurements, consistency in reporting, cost-effectiveness of op risk control, and changes in criteria for effective computation of capital for operational risks. (More on these issues later).

2.4 A classification and identification system for operational risks

Nobody will dispute the need for identification in human society. We all have a name and ID card. Many of us who travel internationally have a passport with our name, certain vital life details, and a photo. But this concept of identification article-by-article and entity-by-entity has not yet taken hold in the physical world of commodities; neither has it been considered, until recently, a requirement in the logical world of accounts and financial (virtual) goods.
This policy of doing without a system of rigorous identification is currently being challenged. Internet commerce, online supply chain requirements, and advances in technology available at low cost have made the change mandatory. We are starting to appreciate that we live in a physical and logical world with, correspondingly, real and virtual objects that need to be uniquely identified.

- This is necessary to face the challenge of connecting the physical world to the virtual (data) world, and
- The implementation of reliable ID solutions brings to the foreground the concept of classification, which is prerequisite to automatic identification.

Financial goods are part of the supply chain. Experts believe that the next wave of changes in the supply chain will see to it that our concepts of handling inanimate objects will evolve as radically as with Henry Ford’s assembly line at the beginning of the twentieth century. There are good reasons for this change.

The revolution currently under way in financial services, as well as in merchandising and distribution, parallels that of the assembly line in terms of depth. At its roots is a unique identification (ID) code for each individual item: it will be embedded in products, printed on packaging, used for storage, transmitted over short and long distances, provide information to a reader, as well as receive and store information. At the basic level, in the post-PC era low cost intelligent devices with resident agents and telecom gateway will receive and read signals, translate their code, pass information to a computer directly or through the Internet, and generally do something with the received data stream. Knowledge-based systems will permit multiple platforms and software modules to talk to each other, sharing data streams and commands, while other software modules execute accounting and logistics operations without human intervention.

The system solutions of the future that I am describing will resolve some of the current problems in the origin of operational risks, but they will also create other operational risks which must be approached in a proactive way. There is no free lunch.

It may help a better appreciation of the point made here if we keep in mind that the notions underpinning a supply chain did not change until the industrial revolution altered the means of transportation, making possible large transfers over long distances at an affordable price. This was a nineteenth-century development. Then, in the twentieth century, came the assembly line, which resulted in a big step forward in production chores. Twentieth-century type industrialization, however, did not change the linkages to the other key nodes of the supply chain; for those major developments we had to await the advent of the Internet. The effects of this delay can be summed up in the following two points:

- Information about current status, therefore visibility, did not greatly improve in the first 50 years of computer usage.
- With new financial products, which are more flexible and more risky than grandfather banking, reduced visibility resulted in lack of reliable information about accounts and financial statements.
This second deficiency resulted in latency in the feedback from the users of information to its producers. The financial scams of 2001 and 2002, plus the regulators’ emphasis on the causes of operational risk and their control, changed this perspective.

- Correct identification is now becoming a fundamental operational requirement,
- But unique, reliable identification of goods, accounts, and other wares is not possible without a rigorous classification system.

Precisely for the reasons explained in the preceding paragraphs, the classification of operational risks is a prerequisite to their identification. The problem is that classification is difficult in general terms because organizational differences between banks blur business lines and adversely affect classification codes that aim to be universal.

The previous section has shown that with the standard approach to capital allocation for operational risk, the Basel Committee promotes eight business lines. The British Bankers Association has 14 business lines in its database, because that is how British banks work. Fourteen is more detailed than eight, but this does not mean that the 14 such business lines fit the business of every British bank, let alone foreign banks. For the same reason, it is virtually impossible for all regulators to have the same classification code.

There is a way out of the straits created by pursuing the dual goals of compatibility and flexibility. This is a parallel code system whose taxonomical part is universally homogeneous – at least at the top two levels – while the lower end of the classification and the identification code are specific to the entity which has to solve a classification/
identification problem. This is as true of operational risk as it is true of credit risk and market risk.

Figure 2.3 shows the parallel code system I have developed, and which has been implemented by manufacturing companies and financial institutions. In one of its implementations it has helped in reducing operational risk in the expediting of wares to business partners. Improvements have been significant by an order of magnitude.

2.5 The Chorafas parallel code system as an organizational infrastructure

Let’s look first at classification since, as explained in the sections above, it should precede the identification of objects. The best way to classify a population of objects is taxonomical. In the parallel code system, the higher level of classification is done through a 10×10 matrix (each column and each row identified by 0 to 9).

- A 10×10 matrix has 100 pigeonholes – well beyond the eight or 14 business lines identifying families.
- Not all pigeonholes need to be filled, and each bank can select from the filled those appropriate to its operations.

The family is the highest taxonomical level of the parallel code system. Each family can be exploded to greater detail, again using a 10×10 matrix. This matrix, second in a taxonomical sense, helps to classify the groups of financial products belonging to the same family. Type of product or service and process serving are the characteristics bundling together group classification. Note that there exist 100 groups per family.

- Between family and group there are 10^4 pigeonholes, a high multiple of what is needed for unique product identification.
- Below that level, essentially corresponding to each group, is the 10×10 matrix of each class of operational risk. This greater taxonomical detail provides 100 op risk pigeonholes as classes.

Taxonomical classification is not only a practical issue for operational reasons, but also a state of mind. As in the case of manufacturing and merchandising, successful approaches to operational risk management in the banking industry have to be based not only on a clear distinction between products and their associated credit risk, market risk, and operational risk, but also on an unambiguous distinction. Among the different categories of op risk,

- The families, groups, and classes are organized in the taxonomical way.
- Families and groups address the whole range of products and services; classes focus on operational risk per group.

Figure 2.3 also brings to the reader’s attention that operational risk classification can go beyond the class level, therefore outside the taxonomical approach. This is
done through *further definiens*, which, as their name implies, define the op risk in each class to further detail.

- Each credit institution can use its own further definiens, which may not be compatible to those of the other institutions.
- The common ground is provided by the operational risk class. (Note that some further definiens are `<bc>` oriented, others are `<s>` oriented. More on this later.)

The need for a taxonomical approach to the classification of operational risks is not appreciated in all quarters, yet it is the cornerstone of their control. As the preceding paragraphs brought to the reader’s attention, to properly identify all the operational risks we are faced with, we must first classify them in a taxonomical way. This is the role played by families, groups, and classes.¹

Families, groups, and classes represent among themselves $100 \times 100 \times 100$ pigeonholes. Contrasted to this one million classification possibilities, the standard approach identifies eight product lines and seven op risks, which is too summary and many banks say it is also arbitrary. Remember also that the British Bankers Association follows 14 product lines. However, several banks:

- Have 15, 20 or more channels, and
- Their classes of op risks are 12 or more.

This is why I have insisted on the fact that a proper classification methodology should start with products and processes pertinent to all banks, going down to the detail that is specific to our bank; and that it should also account for databased historical risk information, because if the history of op risk is taken out all there is left is guesswork.

Notice the flexibility of the method underpinning the parallel code system. The classification methodology, as we have seen, allows us to go beyond taxonomy into further definiens. The latter makes possible a one-to-one correspondence between classification and identification, whenever the taxonomy is not detailed enough.

A possible critique of this system is that some operational risks, for instance internal fraud, may be present in more than one taxonomical group. This, however, is not a problem but an opportunity. It is always wise to associate operational risk to the product-and-process, because it enables it to be tracked more effectively. Then, homogeneous op risks can be grouped together in the parallel code system – for instance, by using the suffix.

The best classification is one that has the maximum number of business lines, products, and services integrated towards a global classification system at the top, but one that can also be exploded in terms of detail and of specific identification requirements. Detail is crucial for unambiguous identification.

The parallel identification code has three components:

- A *basic code*, `<bc>`, written in hexadecimal (radix 16), which corresponds one-to-one with classification, and is supported through a parity check.
- A *suffix*, `<s>`, which allows linkages outside the classification – for instance operational risk across taxonomical boundaries.
An *origin*, <o>, which makes possible identification outside the classification and which may, for example, identify the branch.

For any practical purpose the identification number corresponds one-to-one to the classification number, but their characteristics are different and so is their use. A valid classification system will also account for migration from credit risk and market risk to the operational risk category. There is plenty of work to be done within the perspective examined in this section.

In conclusion, lack of proper logical classification of operational risk results in difficulty (or impossibility) in understanding it and measuring it. Ideally, a classification must see to it that defined operational risks are mutually exclusive and comprehensively exhaustive. This is not easy, because many op risks are cross-functional and usually overlapping – but it can be done. The more polished the work we do, the better it will observe the rules outlined in the previous three sections (2.2, 2.3, 2.4). Compromises in classification and identification usually lead to trouble and therefore they should be avoided.

2.6 Quantitative and qualitative approaches to operational risk identification

When asked about best practices in identifying and measuring operational risk, many companies responded that while they aim at identifying, monitoring, and controlling operational risk, clear-cut norms are still missing, and op risk measurement frameworks are still at a developmental stage. Some credit institutions have added that best practices will necessarily involve both quantitative and qualitative approaches. Not everything can be quantified. Indeed, the Basel Committee suggests a list of crucial qualitative elements of effective op risk control:

- Senior management involvement
- A good management information system (MIS)
- Strong internal controls
- Personnel training, and
- Contingency planning.

These are valid for all financial entities, of any size and scope. Qualitative analysis is just as important as quantitative analysis and, on many occasions, the one assists the other, as demonstrated by the following paragraphs.

Quantitative approaches to operational risks are discussed extensively in Chapters 7, 8, and 9, along with toolboxes for analysis. Therefore, I will not elaborate on them in this section, but would like to make three points that provide perspective when we talk of quantification, analytics, and the evaluation of the results being obtained.

The first is a reminder of the point made earlier: that all types of analytical treatment of quantification are 80% a data problem and only 20% a mathematical problem. In other words, *if* we have no data *then* we have no chance of doing quantitative analysis even if we have available the best toolbox. As Chapter 1 has explained,
To understand the pattern of op risk we must datamine the information elements we have in operational risk classes.

But, as stated above:

- We will never have the op risk data we need unless we apply a rigorous methodology for classification and identification – *plus* op risk monitoring and recording.

The second critical point regards the sophistication of the toolbox that can be used to address analytical and modeling requirements for operational risk control. Our tools should include: hypothesis testing, experimental design, analysis of variance, autocorrelation, regression, least-squares, extreme value theory, non-linear programming, and confidence intervals.

Just as important is to perform symbolic logic operations, fuzzy engineering, Bayesian logic, genetic algorithms for time- and frequency-domain analysis, spectral analyses, and filtering. It is also important to visualize processes and analyze images. As this list suggests, operational risk problems cannot be successfully attacked in the quantification domain through simple business statistics – which essentially means worn-out tools.

The third point concerns using the past as a predictor and estimating the model risk involved in this approach. It is quite wrong to suggest we can tell what will happen tomorrow by what happened yesterday. But to say it is not possible to benefit from an analysis of past events, or from a peer comparison within a group, is to imply everything is totally random and is not subject to research.

To close the gap between these two statements we must use the concept of confidence intervals with practically everything we estimate. The *mean value*, x, of a variable which we study represents very little in terms of information if we don’t know the *variance*, which is the second moment of a distribution. The use of the standard deviation (s, square root of the variance, v) allows to understand the distribution’s pattern and to identify a level of significance. Using statistics from the Bundesbank, Figure 2.4 gives an example at the 95% level. The 95% level of confidence is equal to $x \pm 1.96s$ (mean plus or minus 1.95 standard deviations) in a two-tailed distribution.

Readers familiar with the use of confidence intervals, fuzzy engineering, and genetic algorithms will appreciate that all three are an interface between quantitative and qualitative methods. They help to quantify an abstract notion, like the 95% level of significance, or to quantify belief functions. Fuzzy engineering converts into pattern concepts like:

- More or less
- Higher (or lower) than . . ., and so on.

Let’s now turn our attention to the qualitative drivers for operational risk control. These are many. Large-scale, they include the operational risk management framework we adopt, as well as the classification of op risks along homogeneous lines
(see sections 2.4 and 2.5); small-scale, they focus on causation clauses in operational procedures, application of extra control over large transactions, tracking fraud attempts during holiday periods, and similar instances which cannot always be successfully quantified, but which are present nonetheless.

Other qualitative factors in operational risk control are greater consistency in risk measurement, management transparency, communication of findings, explanation of op risk impact on the organization, definitions of expected and unexpected losses, and adequacy of capital provisions – which could be quantified through confidence intervals, in line with the model in Figure 2.4.

The focus on awareness and op risks training and self-assessment are yet more examples of qualification factors. Among qualitative drivers with a punch are incentives (merits) and disincentives (demerits). The same is true of independence of operational risk management and control functions, as well as of ways and means for mitigation of operational risk.

Among organizational issues that have to do much more with management beliefs and culture than with analytics, is the balance between centralized and decentralized functions in regard to operational risk control. For instance, the Deutsche Bank has a centralized group of 12 people, and decentralized small groups which look after op risks in all its operations. Other banks depend solely on centralized op risk control.
A crucial question is how to identify and measure qualitative factors in operational risk. My answer is the use of the Delphi method,6 which I have found to be the best approach in operational risk identification, and in the definition of valid control solutions. Delphi is based on systematic pooling of expert opinion. The rules are:

- Select a sample of knowledgeable and independent-minded people.
- Create the proper conditions under which they can perform, then let them rate an issue.
- Use considerable caution in deriving from their opinion both diversity in thinking and a convergent position.

Delphi is typically conducted by means of a focused questionnaire given to the experts. The object of this approach may be strictly qualitative, such as identifying operational risks; or it may be somewhat more quantitative, such as asking for their educated guesses on the frequency of a given op risk, or on its impact. The use of fuzzy engineering and the Delphi method have many things in common.

In conclusion, operational risk has both qualitative and quantitative components. The latter are not served through too detailed algorithmic expressions, complex and obscure equations, or an inordinate amount of theory. What is needed for an able solution is sensitivity to qualitative factors, and this is what Delphi provides.

2.7 A framework for monitoring operational risk

A study done by Kodak in the early 1980s gave evidence that six consecutive years of mismanagement can bring a great company to its knees. In 2001 and 2002 we had plenty of examples of companies fitting this pattern (see also Chapter 4, on management risk). The most frequent reason behind this failure has been senior management itself – which is an operational risk.

Following the identification of operational risks, management must decide how to control the exposure associated to op risk. While at least in selected areas, risk transfer might be done through insurance, in the majority of cases operational risk must be controlled through a methodology fitting our bank’s business perspective – and leading to immediate corrective action.

- \textit{If} the problem is at the top, which means the CEO, then the board must take action and change the management.
- \textit{If} the problem is legal risk (see Chapter 3), then the board and the CEO should work together with the legal counsel to solve it or mitigate it.
- \textit{If} technology is the weak spot in the chain, then the CEO and the other members of the executive committee must come forward forcefully to change IT direction, and maybe the chief technology officer (CTO) as well.

These are senior management actions and they have to do with forceful decisions, not necessarily with money. Nevertheless, capital charges for operational risks are also necessary (see Part 2), and are currently demanded by regulators. In the longer run, qualitative criteria, organizational solutions, quantitative tools, interactive
Classification, identification and monitoring of operational risk databases, and capital should work in unison. Money alone does not represent an effective substitute for adequate management.

Another ‘must’ is open communications lines and feedback. In this connection, the best answer is rigorous internal control and corrective action with senior management taking the lead. Senior management is the only authority able to control operational risk in the longer term.

The board and CEO will be much better positioned to act in the direction of operational risk control if the institution has in place a framework that assists in taking action. Based on a project along the principles outlined in Chapter 1 and in this chapter, Figure 2.5 presents such a framework for the evaluation of global operational risk.

![Figure 2.5 A framework for the evaluation of global operational risk](image)

What this figure misses is the detail. This is intentional, because detail is specific by bank in the sense that it is always expressed within an operational environment. It can never be given in an abstract sense; it should also reflect the finite elements of a bank’s product channels and processes, in conjunction to the operational risk classes on which we have chosen to concentrate.

For example, these may be the seven classes proposed by the Basel Committee: internal fraud; external fraud; employment and workplace safety; clients, products, and business practices; damage to physical assets; business disruption; systems failures; execution, delivery, and process management. (They have been presented in Figure 2.2.) Or, we may break down these classes into further detail. As an example, at least 14 different operational risks are included in just one class – system failures: networks, databases, central processors, servers, workstations, the software associated to each of these groups, analysis and programming staff, operators, help centers, and IT management.

The previous section brought to the reader’s attention that the advanced measurement method entails that the classification of op risks may be quite different from that outlined by Basel’s standard method. For instance, one financial institution chose to emphasize operational risks associated to:
Operational Risk Control

- Business continuity planning
- Business concentration
- Litigation
- Legislative changes
- Compliance
- Development and use of models
- Insider trading
- Taxation.

In connection with operational risk, major activities in which a financial institution, and any other organization, finds itself engaged should be examined both in a holistic form and in detail. An example is outsourcing, which some banks have begun to practice widely on the wrong assumption that in this way they delegate part of their responsibilities. This is tantamount to underestimating operational risks. A Basel Committee document of July 2002 on sound practices for op risk supervision has brought attention to outsourcing risks by stating that ‘Growing use of outsourcing arrangements . . . can mitigate risk, but can also present significant other risks to banks.’ Therefore, Basel advises that institutions should:

- ‘Establish sound policies for managing the risks associated with outsourcing,
- ‘Understand that outsourcing should be based on rigorous legal agreements, with clear allocation of responsibilities, and
- ‘Appreciate that the use of third parties does not diminish the responsibilities of the board and senior management.’

A study I conducted subsequently to this document identified some two dozen issues raised by IT outsourcing which are operational risks. These include: quality of human skills, proven capability for advanced solutions, technology infrastructure, ‘factory processing’ in one location, system reliability, availability, and data integrity.

Among other operational risks (in the same list) are lack of homogeneity of platforms, lack of homogeneity of basic software, lack of sophistication of applications software, age of applications software, and maintenance of applications software. Also, security (physical and logical), effective handholding, cost-effectiveness of contracts, outsourcer bankruptcy risk, fall-back, backup, and optout.

Critical operational risk factors are, as well, relationships created in other jurisdictions, auditing of outsourcer(s), contagion of op risks among related business lines, and business-partnership-wide internal control. These are examples of the detail that is needed to fill the pigeonholes of the classification framework which we looked at above, and therefore provide a reference structure that can keep operational risk under control.

2.8 The art of operational risk modeling

As of March 2003, nearly four years after the first consultative paper on Basel II and in the aftermath of QIS3, one of the major developments is that both regulators and
commercial bankers are inclined towards the two poles of the proposed system. Namely, the simpler and more advanced alternatives, rather than half-way solutions.

This means a marked preference for loss distribution. Of some twenty international banks participating in a 2003 meeting in London, the large majority had chosen the loss distribution approach. Two had gone for the scoreboard, where a key challenge is that of correlations. There were no takers for IMA. Whether loss distribution or scoreboard solutions are preferred, models and modeling are in the front line.

If a major problem with the scoreboard has been that of correlations, what about the challenges presented by the loss distribution approach? The answer is that a loss distribution solution has to be data-rich, in order to permit the bank to compute its own correlations. Besides, these correlations have to be tested and they must be reasonable.

Therefore, the downside is lack of op risk loss data as well as the challenge of developing and recognizing empirical correlations in operational risk losses across application areas, which reflect the pattern of individual op risk estimates. The Basel Committee permits the institution to do so, provided the institution can demonstrate to a high degree of confidence that:

- Its system for measuring correlations is sound
- Modeled processes are implemented with integrity, and
- Solutions take into account the uncertainty surrounding any correlation estimate.

Another basic requirement is that the system for analysis, calculation, and testing can work in periods of stress. To provide such guarantees the bank must validate its correlation assumptions through analytics. Moreover, risk measures for different operational risk estimates must be added for calculating regulatory minimum capital requirements.

It is appropriate to note that challenges regarding correlation are present with all operational risk control approaches by Basel II, except the basic indicator (see Chapter 7). For this reason some experts suggest that, in the absence of op risk databases, many banks may choose the basic approach to avoid the correlations requirements that start with the standard approach and progress with the three advanced methods.

There are also other queries relevant to implementation of operational risk solutions which involve modeling approaches and the models themselves. One of the major ones is that of partial use of each op risk control methodology, and of the measurement method associated to it. For instance, what about a bank’s ability to use different approaches in:

- Different countries, and/or
- Different subsidiaries.

The first paragraphs in this section spoke about the choice of loss distribution and scoreboard, but the AMA methodologies are not necessarily applicable to small entities. The way to bet is that a loss distribution or scoreboard approach for the big
bank cannot be used in one of its small subsidiaries – while, at the same time, the basic and standard approaches are not an option for large banks.

Another, closely related, problem connected to operational risk tracking and control is that of databases (see also Chapters 5 and 8). Today several banks are actively working to solve the database bottleneck – whether through a consortium or by themselves. Many develop an operational risk data collection and analysis methodology targeting the loss distribution approach – in appreciation of the fact the latter absorbs op risk data like a sponge.

A good example of solving this challenge is the ORX consortium, a project set up by a dozen major banks that have combined forces and information elements on operational risks (more on this later). But Barclays Bank, which also adopted the loss distribution approach, chose a lone wolf strategy. The way senior management looks at it,

- The bank can gain more value out of eigen scenarios
- While it is quite difficult to add value by combining forces with other institutions.

Still another interesting issue connected to development and implementation of operational risk models, one which is always present whether a consortium or a lone wolf strategy is chosen, is the question whether operational risk databases should be centralized or distributed. There is no unique answer to this query, which, to a very significant extent, relates to technology risk (Chapter 5).

2.9 The role of internal control and auditing in operational risk management

As underlined in a research paper by the International Organization of Securities Commissions (IOSCO), verification procedures relating to controls should be a function of both internal and external oversight. Based on the experience of its members, IOSCO advises that there should be four levels of defense:

- Internal day-to-day management
- Internal auditing
- External auditing, and
- Action by the supervisors.8

All four levels of reference must have tools and procedures to report logical and physical inadequacies, misbehavior, security breaches, and system breakdowns. Like bank supervisors, the securities commissions, which are members of IOSCO, underline that while these events may take place way down in the organization, the final responsibility and accountability for them rests with senior management.

Both the securities commissions and the bank supervisors aptly maintain that capital charges for operational risks – while they are necessary – don’t represent an effective substitute for adequate management. Rigorous internal control is the answer, because the only authority within an organization to control operational risk is senior management.
Internal control is a process that evolves over time. As more functions are being added, new and old internal controls coexist. Typically, the elder type of internal control has been used to address abuse, fraud, and errors. But during the past 10 years, new targets have been added to this short list:

- Compliance
- Breaking of credit limits
- Dynamic haircuts
- Market risk exposure
- Breaking of trading limits
- Changes in organizational behavior
- A long roster of operational risks.

One of the questions I have researched in depth during the past few years is the difference between internal control and risk management. Is risk management part of internal control or is it the other way around? The two do overlap even if, more specifically, risk management uses mainly quantitative tools, namely:

- Statistics, and
- Models.

By contrast, in internal control top criteria are qualitative:

- Accountability, and
- Due diligence.

But while they differ in some respects, at the same time risk management and internal control have many things in common both between themselves and in connection to accounting and auditing, as shown in Figure 2.6. According to the Basel Committee, the scope of internal audit is broad and includes major areas:

- Internal control processes
- Adherence to legal and regulatory requirements
- Risk management policies and procedures
- Financial information systems
- Testing of transactions, systems, and procedures
- Testing of compliance to regulatory requirements
- Special investigations.

Nearly all banks consider the auditing of accounting records within the scope of internal audit. Regrettably, this is not true of the banks’ financial statements – as it should be the case. The result is an inordinate amount of operational risk, as the 2001–2002 cases of CEO malfeasance have demonstrated.

The reference to internal auditing must be qualified. Contrary to internal control, which is a process, auditing is a function. Audit reports are a good basis for validating operational risk events. But there should be no amalgamation between:
Auditing, and
Operational risk management.

Auditing is a function of inspection largely based on sampling. Validation through auditing is done in a rigorous but intermittent manner, which must carefully review external and internal loss data. The control of operational risk is steady and, as we have already seen, it should use quantitative and qualitative drivers such as:

- Event categories
- Frequency of operational risk events
- Evidence on loss data
- Compliance to regulatory rules.

Auditing should evaluate the ability of the bank’s current culture, as well as of its organization and structure, to manage and control operation risk. It should prompt group-wide op risk control, supported by technology. Both auditing and op risk control must be done in a cost-conscious way, and they should be effective.

When it comes to evaluating the role auditing can play in operational risk control, it is appropriate to keep in mind that, in most banks, internal audit is not a sizeable activity. It represents, on average, 1% of the workforce. Yet, its scope has considerably expanded to include:

- Financial audit

Assessing the reliability of accounting, information system support, and financial statements.
Classification, identification and monitoring of operational risk

- **Compliance audit**

 Evaluating the quality and appropriateness of internal control in regard to compliance to laws, regulations, and internal policies.

- **Operational audit**

 Focusing on organizational structures, its solutions, methods, procedures, and transactions.

- **Management audit**

 Targeting the quality of management, its approach to risk, and the control of exposure – in accordance to the bank’s objectives.

 Some banks are outsourcing their internal audit. The Basel Committee on Banking Supervision says that regardless of whether internal audit is done in-house or is outsourced, the board, CEO, and senior management remain ultimately responsible. They are accountable for assuring that the systems of internal control and internal audit:

 - Are adequate, and
 - Operate effectively.\(^\text{12}\)

 The Basel Committee also underlines that internal audit is a core function of all banks. An institution might outsource the auditing work but it can never outsource the auditing responsibility. Neither can it outsource its responsibility for operational risk control. All these issues form a pattern of management responsibility and accountability. Therefore, they affect in an important way the classification, identification, monitoring, and control of operational risk.

Notes

3. For practical implementation examples, see Chorafas, *Integrating ERP, CRM, Supply Chain Management and Smart Materials*.

3 Legal risk

3.1 Introduction

The origins of legal risk are infinite, and each case has its own characteristics. What most of them have in common is that, in their source, operational risks are connected either to current mistakes or errors of the past. As we will see in this chapter, legal risks get amplified because of deregulation and globalization, which have somehow reduced visibility as well as the counterparty’s obligation to perform.

Put in basic terms, legal risk is an operational risk that comes above the better known, and therefore appreciated, credit risk and market risk. Yet, in spite of its importance, the impact of legal risk has received scant attention in international financial dealings. Experts say that, if tested in court, many of the current transnational agreements will not stand.

- This will have disastrous effects on business confidence, and
- It may even disrupt global trade, because confidence is at the heart of the financial system.

Globalization brought into perspective the inconsistency prevailing in laws and regulations among different countries. By doing so, it amplified the aftermath of mistakes made in the present and in the past. These may concern the choice of a counterparty or of a business partner; entering a new market without due diligence in learning its laws and its culture; being caught between two different and incompatible systems of laws and regulations; paying scanty attention to compliance; and plain errors of judgement.

An integral part of legal risk is technical glitches, including the ‘not invented here’ and ‘would not happen to me’ sort of thinking. An example is lack of advance scrutiny on the counterparty’s obligation to perform, which may not be enforceable because of differences in the letter of the law and the:

- Breakdown of the law enforcement industry (judiciary and police)
- Crony capitalism and the impact of occult interests
- Political greed and corruption, and
- Exploitation of different loopholes existing in the letter of the law.

Globalization, deregulation, and the move toward litigation as a way to settle differences, as well as the turn to the judicial system into a sort of regulatory agency, as shown in the case of the US Department of Justice against Microsoft, have amplified the legal risk landscape. Because global markets have so many unknowns and unpredictable events, litigation has become a way of thinking.
For many instances, therefore, legal risk is now the means for solving fairly significant difference in legislation and regulation prevailing in different countries where a financial institution and its counterparties operate. What many people and companies fail to appreciate is that legal risk often amplifies other risks. The principle with litigation is that unless you are getting into it with thorough knowledge of the law and your eyes wide open, it is not the right process for you.

The goal this chapter has set itself is to demonstrate how in the modern, global economy legal risk has taken on a totally different dimension than the one characterizing it in the past. Also to convince that both persons and companies should think very carefully about this operational risk, because a great deal of the success or failure of any enterprise depends on the solution to be provided through court decisions.

3.2 Back to basics: the definition of tort

In modern business, companies have numerous lawsuits filed against them, asserting various reasons. Often, these include class actions and stockholder derivative actions. The results of complex legal proceedings are difficult to predict. Moreover, many of the complaints being filed do not specify the amount of damages that plaintiffs seek, making it nearly impossible to estimate in advance the possible range of damages that might be incurred should these lawsuits be resolved against the company.

Apart from the fact that lawsuits distract management from its main objectives, the uncertainties to which the previous paragraph made reference are a major unknown in regard to a firm’s continuing well-being. An unfavourable outcome or settlement of one or more lawsuits could have a material adverse effect on its:

- Financial position
- Liquidity,
- Results of operations.

Even if the outstanding lawsuits are not resolved against the company, the uncertainty and expense associated with unresolved legal cases could seriously harm its business, including its reputation. An unwritten law of business is that when something goes wrong, the aftermath seems twice as bad as might be the real case.

Theoretically, uncertainty should not exist in connection to legal risk because since the time of Hammurabi in 1700 BC laws have been codified and written down, and a main theme in any litigation is to know exactly what one wants to defend or to achieve. This allows us to prepare our arguments and elaborate on our legal strengths and weaknesses, as well as to keep an eye on the give and take certain to follow in any negotiations.

Along this line, it is wise to know the bare minimum we can accept and the maximum we are hoping for. Once we have studied what the law says, and have these levels of reference, we are well on our way towards facing legal risk – or, that’s what the theory says. In practice, matters are more complex. First and foremost, we must put ourselves on the other side of the table and:
Study what drives our opponent(s) in a legal case
Evaluate whether our opponent has political or occult means to influence the judiciary, and
Estimate how much we hope to get, or how little we are willing to accept, in a negotiated settlement.

The way to bet is that such a settlement will have regard to assets and liabilities, therefore possessions. A possession is single and exclusive. Two different parties, not being joint owners, cannot have at the same time possession of the same thing. Therefore, if one of the parties loses the court case, there is going to be transfer of assets.

Critical in connection to litigation is the role of motive. There are several torts with a motive in which liability may be an integral part. The word tort stands for any private or civil wrong, by act or omission, for which a civil suit can be brought. This definition is all-inclusive, except breach of contract. An example of tort is asbestos litigation (see Chapter 12).

Experts believe that multibillion dollar cases in the twenty-first century will have tort in their background, rather than breach of contractual clauses. Though in the general case the laws, jurisprudence, and ways to define legal risk are quite different from one country to the next, such differences are much greater with tort than breach of contract, including procedural issues characterizing each jurisdiction. The US and UK provide an example:

In the US, legal risk frequently involves class actions; judgment is done by jury; there is unlimited liability; and there exists a high environmental liability as well.
By contrast, in the UK there are no class actions; the judge (not a jury) decides on compensation; and there is liability cap. Also environmental liability is much lower than in the US.

As mentioned in the preceding paragraphs, the background to tort is motive; which signifies the reason for the conduct. It may be an evil motive, or tort may be done wilfully without cause or excuse. Motive often refers to intention, a term that describes the basic reason for conduct and its desired consequences. Motive influences the actor, but:

If conduct is unlawful, a good motive will not exonerate the defendant, and
If conduct is lawful apart from motive, a bad motive will not make the defendant liable.

There are, however, several exceptions to this second point. The first point, too, has exceptions; defenses like necessity being an example. Fundamentally, it is the act, not the motive for the act, which is judged. If the act, apart from motive, gives rise to damage or injury, the motive will not relieve the actor of liability.

An example of unlawful conduct is the false statement. A false statement is one with knowledge of its falsity, or recklessness. Doing something recklessly means knowing the statement is false and being consciously indifferent about it. This is much more
than gross negligence. It is intention, with the actor bearing the consequences of his act.

Another example is deceit. Deceit originally had a narrow meaning of swindling a court in some way, and it has been one of the forms of abusing legal procedure. The concept of deceit, however, has expanded over time. Still another example is defamation. Lawyers say that no domain of litigation is more fertile than defamation. Nor has any branch of legal practice been more perplexed with minute distinctions.

When two or more people combine for inflicting unlawful injury upon another person and cause damage to that person, they commit the tort of conspiracy. Originally the law regarding conspiracy had a narrow meaning; that of combination to abuse legal procedure. Its meaning however has expanded, bifurcating into civil and criminal conspiracy. Both have legal consequences:

- In principle, damage to a plaintiff is an essential part of tort.
- Combination of different people's actions leads to tortuous conspiracy.

Persons are said to be joint actors in tort when their shares as actors are done in common design. In this case, they share joint responsibility. On the other hand, mere similarity of design on behalf of independent agents is not enough. To involve joint responsibility, the action must be concerted to a common end.

There may be actions by a single party, or several in unison, which involves negligence. This, too, can have a legal aftermath. Negligence is the omission to do something that is part of one's duties. This is often linked to a reasonable person's behavior, which is an abstract concept but has real impact when associated to a person's behavior in the execution of his or her duties.

3.3 Responsibilities resulting from legal risk

In business, unlawful acts bring up the issue of liability resulting from the master–servant (or employee) relationship, as well as from other relationships which are not of a contractual nature. Historically, the master is liable for any tort the servant commits in the course of his or her employment; though the servant himself is also liable. This idea of vicarious responsibility is common, founded on a good deal of ancient law, starting with the law of Hammurabi.

Laws, however, are not cast in stone. Over the centuries the concept of complete liability for the wrongs of servants changed to that of liability only where there has been command or consent on the part of the master to the servant's wrong. In the Middle Ages the master's liability was considerably narrowed to the point that he was no longer liable unless he particularly commanded the very act done – with one exception.

The exception has been the case that the master is liable if an implied command could be inferred from the general authority he had given to the servant. Eventually, with merchandising this exception took on significant importance, and was at the root of the eighteenth and nineteenth century extension of the master's responsibility.
Trade has been responsible for this evolution in legal risk because trade became too complex to allow the original direct command concept, which suited the old simple relation of master and servant. The expansion of liability covered persons such as agents, who were not accustomed to take their orders from a medieval master. Late in the nineteenth century the implied command concept theory was displaced by the scope of employment which is now the rule.

The question however remains: Who is the servant? As far as vicarious liability is concerned, a servant is one whose work is under the direct control of another person. In this sense, the servant is distinguished from an independent contractor, who undertakes to produce a given result, but in the actual execution of the work is not under the order or direct control of the person for whom the work is done.

Contrary to a servant, an independent contractor may use his or her own discretion in things not specified beforehand. At the same time, however, an employer is not liable for the torts of his independent contractor. The employer will be liable, if he gives the contractor authority to do some careless act, which falls under the definition of tort given in section 3.2. Theoretically, this would seem to characterize the relationship between:

- An outsourcer, and
- An insourcer.

The outsourcer may be a bank which, for instance, delegates the execution of its information technology chores to a third party. The latter is the insourcer, who functions in a way similar to what has been said, in the preceding paragraphs, about the independent contractor.

Practically, in the case of a financial institution, this delegation of responsibility does not hold. The central banks and regulatory agencies of the Group of Ten (G-10) countries have made it clear that full responsibility for execution of outsourced IT remains with the board, CEO, and senior management of the outsourcing bank. The insourcer, too, is responsible – but the top management of the outsourcer is in the frontline of personal accountability.

Another example where the coming years may hold surprises in terms of responsibilities for legal risk is that of expert opinion. In 2001–2002 we had plenty of cases of equity analysts who misinformed investors. Merrill Lynch, for instance, paid a $100 million penalty for this reason. An interesting case for the future is legal risk connected to rating agencies. Such risk exists at two levels:

- The process of credit rating, and
- The issue being rated.

In the case of the issue, rating is a function of the bond’s structure, issuer, bankruptcy law, covenants, and country. In some countries security due to covenants is worthless in a bankruptcy court. For example, in France the judge can override covenants and put all lenders, secured and unsecured, at same level. In other countries, the court may be corrupt.

Transactions made in good faith where ex ante legal opinion is overruled are not unheard of. Examples are those of the Hammersmith judgment in the UK, and of a
power utility in Washington State in the US. My research on legal responsibility derived from documented formal opinions that credit rating agencies have to look very carefully at:

- Legal risk connected to their rating, and
- What both investors and regulators can and cannot do with such opinion.

In the United States the freedom to express one's opinion is protected by the First Amendment. But the case of such opinion being taken as a basis for investments and capital reserves, as specified by Basel II, has not yet been tested in court. Experts participating in my research underlined that this issue is particularly important in structured finance.

The same experts made the point that legal risk is greater in countries where there exists a tendency to sue. Rating agencies, for instance, must be very careful in the US. There has already been a critique about the rating of Enron debt, in the sense that nobody reacted in a way that would inform the bondholders ahead of time. So far this case has not led to court action.

Nevertheless, evidence provided during research interview and meetings suggests that following Enron there is more focus on legal risk at the rating agencies side. For instance, more stringent procedures are now followed by their credit policy group, which confirms the ratings and oversees all matters from legal and other viewpoints. The crucial question is how to act as a rating agency, given the likelihood of tort.

Some rating agencies commented that the aforementioned type of legal risk cannot be deadly, because in court it is necessary to prove negligence. Apart of that, rating agencies rely on the company's financial statements. This, however, is an argument Andersen brought up – and it did not stick. The reliability of financial statements is part of accounting risk, which incorporates the likelihood of fraud.

- If there is no fraud,
- Then there is management risk (see Chapter 4).

Another component of legal risk is documentation risk, largely a human resources and technology problem. Compliance falls in the same category (see section 3.8). In establishing the nature of tort, and the extent of liability associated to tort, it is important to evaluate in a pragmatic way the master–servant connection, and what we might expect from our opponent(s) in terms of unfavorable surprises. This permits us to gauge the outcome. Only in the light of what we can conclude from this analysis about our legal position in relation to the motive(s) of our potential opponent(s) can we establish a valid strategy for defense.

The strategy of our opponent(s) and his (their) history of deception, as well as the economic and political environment within which litigation takes place, usually weigh greatly on the outcome. Legal risk has to be judged by taking full account of the legal and economic environment characterizing business operations, as well as the evolution of jurisprudence over time.
3.4 Contractual aspects of legal risk

An examination of contractual aspects of legal risk is important because, fundamen­
tally, the business of a credit institution can be analysed as a series of contracts. In all
likelihood, operational risk will be embedded into each one of them. The probability
of future legal risk is highly influenced by:

- The clauses in the contract with the counterparty, and
- The credit risk and market risk assumed by each party.

New laws may bring up new contractual risks. The Gramm–Leach–Bliley Act of
1999, which repealed the Depression-era prohibition against combining commercial
and investment banking, could be used against a credit institution. The law requires
diversified financial companies to be not only well-capitalized but also well-managed.
On 18 July 2002, federal regulators limited the activities of Pittsburgh-based PNC
Financial Services on those grounds.

In principle, institutions most at risk of scrutiny are those involved in complicated
financial deals, such as special purpose vehicles (SPVs), and events like pre-pays,
which have been a curious financial instrument used by major credit institutions. JP
Morgan Chase and Citigroup found themselves in trouble with the pre-pays they had
arranged for Enron out of Jersey Island, an offshore.

Contractual risk and tort correlate; by so doing they drive other risks. But
contractual risk has hues. Typically, contracts with correspondent banks are hard. By
contrast, retail banking contracts established with customers tend to be soft. For
instance, repayment of a mortgage is one of the ambiguities in a contract.

Other things being equal, clauses in hard contractual agreements are more likely to
lead to legal proceedings, claims, and litigation arising in the ordinary course of
business. Theoretically, these are pure legal challenges. Practically, they are as much
financial as they are legal, because they are not determinable in advance and the
ultimate costs to resolve them can have a material adverse effect on the company’s:

- Consolidated financial position
- Results of operations, and
- Projected cash flows.

Plaintiffs, for example, may allege that defendants have made false and misleading
statements, purporting to assert claims for violations of securities laws. As a result,
they will in all likelihood seek compensatory damages and other relief. The company
may believe such claims are without merit and defend its actions vigorously. It may
also ask for an injunction.

An injunction is an order of the court, or judgment, restraining the commission or
continuance of some wrongful act, or the continuance of some wrongful omission. An
injunction is given by discretion of the court, but it cannot be demanded as a matter
of right. There are several ways of classifying injunctions, one of them being into:

- Interlocutory, and
- Perpetual.
An *interlocutory* injunction is issued provisionally until the case can be heard upon its merits, or until further order. The court does not profess to anticipate the determination of the dispute, but merely indicates that there is a substantial question to be tried. Eventually, if the plaintiff proves that at all events he is entitled to relief, the Court will make the injunction *perpetual*. In the opposite case, it will dissolve the injunction.

There may also be *derivative suits*. For instance, Cisco’s 2001/2002 annual statement makes the reference that beginning on 23 April 2001 a number of purported shareholder derivative lawsuits were filed in the Superior Court of California, County of Santa Clara, and in the Superior Court of California, County of San Mateo. The statement adds that there is a procedure in place for the Northern District of California, and those federal court actions have been consolidated. The complaints in the various derivative actions include claims for:

- Breach of fiduciary duty
- Mismanagement
- Unjust enrichment, and
- Waste of corporate assets.

These court actions are based on essentially the same allegations as the class actions. They seek compensatory and other damage, disgorgement, and other relief. Some legal actions against entities focus on *compliance risk*. This, too, is an operational risk. It refers to the possibility that a company will be found guilty of wrongful acts, by:

- A court
- Arbitration panel, or
- Regulatory authority.

Having failed to comply with an applicable legal or regulatory requirement exposes an entity to lawsuits, or arbitration claims. These may be levied by clients, employees, or other third parties. The company may be brought to court in the different jurisdictions in which it conducts business (see section 3.5 on the complexity of transborder legal cases).

Some legal risk may be the consequence of management’s lack of attention to rules and regulations. New laws or rules, and changes in application of those currently applicable, could affect our company’s manner or type of operations. Violations of enforceable statutory and regulatory requirements could subject our company and its directors, officers, and other employees to:

- Disciplinary proceedings, or
- Civil or criminal liability.

Also tax considerations increasingly determine the legal liability of a firm. Sometimes companies get into trouble through a process they call ‘tax optimization’, which they consider to be different from tax evasion. Often, however, tax optimization involves cutting corners and/or it frequently requires a rapid adaptation of policies to changing legal conditions.
Senior management should always keep in mind that in the present day markets are characterized by litigation more than ever before. Being able to fence-off legal risk is synonymous to being able to survive the increasingly severe competitive struggle. Figure 3.1 presents in a nutshell a three-dimensional frame of reference for legal risk management, which includes cause and effect analysis as its pivot point.

Cause and effect should be studied proactively in terms of legal and financial aftermath, not just post-mortem. Proactive solutions provide visibility, while post-mortems teach a lesson. In its long legal troubles in the early 1990s, Prudential Securities let it be known that, during the reign of George Ball as its CEO, the company made many unwise commitments mainly connected to new and untested products.

- Customers to whom these products were sold brought the company to court.
- This untangled the legal maze behind a court action which took nearly 8 years, at an estimated cost to Prudential Securities of $1.4 billion.

This is a risk the company assumed for very meager rewards. The board and top management should always keep in mind that litigation can be costly, time-consuming, and disruptive to normal business operations. The costs of defending lawsuits, particularly class actions and stockholder derivative actions, could be quite significant and may not be covered by insurance policies (see Part 3). Often, the defense of these lawsuits results in continued diversion of senior management’s time and attention, away from business operations.
3.5 Crossborder legal risk and bankruptcy laws

Here is an example of cost of transborder legal risk. In the early 1990s, two banks, one operating in London the other in New York, were ordered by one of their clients to transfer $5 million from one institution to another. This was done by cable, and there was fraud. The case went to court. In the end, it cost $6 million in legal fees, and there was no solution to the legal issue behind the court action.

This case illustrates what makes crossborder legal conflict so complex. Legal risk, and other operational risks, are augmented by the fact that in a globalized economy credit institutions and other companies often engage in crossborder transactions that are:

- Initiated in one jurisdiction
- Recorded in a different jurisdiction, and
- Managed in yet another jurisdiction.

Differences in legislation and regulation have always existed. However, the globalization of business has magnified the differences that prevail between countries. At the same time, legal risk problems get more complex because with rapid innovation in financial instruments there is no jurisprudence which may offer guidance regarding:

- The way courts may react, or
- How the law enforcement industry may operate.

Globalization has increased legal risk in more ways than one. A recent example is the ongoing discussion on changing national and international laws to set up a legal process for restructuring sovereign debt. The plan being advanced calls for consolidating the bankrupt country’s loans and bonds, and instituting a committee of creditors which would bargain with the government to roollover debts.

Parallel to that, IMF and the debtor nation are expected to work out a long-term rescue program that could put the country on a sound footing, permitting creditors to be repaid even with rescheduling and reductions to interest rate and/or capital, which amounts to haircuts. Solutions are not forthcoming because they involve considerable political and social implications, let alone the technical minefield of laws and regulations themselves.

Some experts suggest that the hurdles to setting up such a global legal system are so many, that for any practical purpose it is not feasible. To start with, any solution worth its salt has to put aside the country’s sovereignty, and put on hold all of its bankruptcy laws. Short of this radical approach, there will always be ways (including legal means) to bypass or outright block such a ‘solution’ even after it has been agreed upon.

Beyond that, all existing loans and bonds, world-wide, would have to be rewritten, and new financial paper with different provisions would need to be issued. This is a legal risk of magnitude and, even if it were for this reason alone, such a ‘solution’ will not pass. Changing contractual rules midstream and retroactively is illegal in most countries, and as Dr Ben Gurion used to say, two things that are wrong don’t make one that is right.
Furthermore, not only the IMF itself would have to amend its bylaws, but also its member countries would need to change their statutes. The added hurdle is that of establishing a supranational juridical institution and giving it legal authority to mediate disputes. This, the experts say, would be a legal and political nightmare—though it might well turn into a lawyers’ paradise.

In fact, as far as legal risk in global markets is concerned, the single biggest mess in international laws is in the domain of bankruptcy. Country-by-country, the bankruptcy laws may not be terribly different from one another, but they leave gaping holes characterized by operational risk. Companies with experience in transborder court issues suggest that such complex decisions tend to conflict with one-another.

The Basel Committee on Banking Supervision can recommend and approve capital requirements, but it cannot change the bankruptcy law, and other laws, of the different jurisdictions. This has led many bankers and other businesspeople to suggest that today bankruptcy laws are the Achilles’ heel of globalization. Here are some examples.

- In the UK, insolvency starts at noon.

This means that morning deals are covered.

- Napoleonic laws prevailing in continental Europe specify zero hour insolvency.

This means last midnight. The morning deals are not covered. By all likelihood, it will take ages for insolvency laws to change and to become homogeneous both because of embedded interests in the current system, country by country, and for other much more practical reasons.

Legal differences in a globalized business environment are so many that they cannot be solved on the run. A sound system has to be built involving not only laws, regulations, counterparties and their management—but also the best legal skills available. An integral part of this effort will necessarily be information system support, feedbacks, and post-mortems. A pattern is shown in Figure 3.2.

In my book, a curious thing in the current environment is that the likelihood of a transborder court fight is rarely considered by investors, yet this constitutes a major operational exposure. Because of transborder legal risk, investors should think twice before lending to borrowers who can get into a global legal mess. This is true both with bonds and with loans. The basic question a bank should ask itself is:

- Can I seize the borrower’s assets?

The answer to the question: ‘Can I seize the borrower’s assets’ is not that simple, and it brings into perspective the legal risk associated with the total entity vs single entity concept. In case of bankruptcy, Swiss law considers the assets of the New York branch of a Swiss bank as part of the mass of its assets. But US law says the opposite: the New York branch is a separate entity.

Hence, two different jurisdictions will make different judgments on the same bankruptcy case.
With the separate entity approach, assets and liabilities will be sorted out at local or national level.

Global business operations can hold many surprises, one of them being senior claims associated to insolvency. The 2001 annual report by UBS makes the following references in regard to its US operations: ‘So long as UBS maintains one or more federal branches, the office of the controller of the currency (OCC) has the authority to take possession of the company’s US operations. This federal power may pre-empt the state insolvency regimes that would otherwise be applicable to the bank’s state licensed offices.’

The UBS annual report goes on to say that if the Office of the Controller of the Currency exercised its authority over the entity’s banking offices pursuant to
federal law, in the event of a UBS insolvency then all of UBS’s US assets would be applied.

- First they will be used to satisfy creditors of its US banking offices as a group.
- Then they will be made available for application pursuant to any Swiss insolvency proceeding.

The last thing one needs in bankruptcy of a global company, or an international banking crisis, is courts fighting one another. Regulators can get together and, if the worst comes to the worst, they can agree much faster among themselves than judges do. The regulators’ more rapid action, however, is necessary but not sufficient. Hence the wisdom of playing devil’s advocate in all matters involving transborder legal risk.

With globalization, special attention has to be paid to the differences existing between insolvency laws. Insolvency laws in G-10 countries are by no means the same. In the UK, two parties, one of whom fails, can net their exposure; and only the resulting difference is brought to court. This is the English set-off law. By contrast, in continental Europe not only the set-off does not apply, but also each country has different legislation on the underlying issues.

3.6 Legal risk may be an impediment to a solution to a banking crisis

In case of bankruptcy, any solution requires legal certainty as to the owner of the claim(s) to future cash flows. This is achievable within a given jurisdiction, though some uncertainties may persist. By contrast, it is not really attainable without a global insolvency regime. Legal certainty does not exist if there is doubt as to the jurisdiction in which assets are located, a risk magnified by the fact that:

- Banks seek cross-border funds outsourcing.
- Competitive pressure drives transborder aggregation of institutions.
- More countries play host to foreign banks, which become economically important.
- Disclosure regimes differ markedly between countries.
- The location of the bank’s assets is often uncertain.
- Banking failures are to a large measure unpredictable.

All these reasons contribute to legal risk and, vice versa, legal risk impacts upon them. The reasons the previous paragraphs have outlined also see to it that claims fail to materialize as expected. One of the interesting consequences of legal risk is that not all depositors have equal rights.

Because the complexity of legal issues and a legal fight among different jurisdictions might lead to systemic risk, according to J.M. Williamson, former Deputy Chief Executive of the Association for Payment Clearing Services (APACS) in London, to understand what it takes to establish a sound risk management process, a financial
Operational Risk Control

institutions should look back at least 10 years and emulate the changes coming in terms of:

- New developments in financial instruments
- Risks, costs and profitability associated to them, and
- Legal and structural questions which impact upon the control of other risks.

Preparing for legal risk becomes more complex owing to the fact that our society is an information economy, with virtual assets. In contrast to real assets there is neither licensing in trading nor copyright in financial products. In modern finance, non-banking organizations come into banking and take away the business – while new financial products are likely to involve complex legal issues in a crossborder sense.

- A great deal of progress with payment systems depends on sharing information across borders.
- A salient problem is that of uniform legislation that will permit effective crossborder, multi-currency netting and settlement done in real-time.

Cross-country legal policies and procedures are necessary to strengthen the underlying transactional framework, in order to enhance financial responsibility. A redefinition of financial responsibility is inseparable from risk management, as any market can undergo times of stress. At the end of 1992 in the United Kingdom the real estate market collapsed for a second time in a few years and left many people who had taken mortgage loans with negative equity. The same thing can happen with the financial markets in trading crossborder off-balance sheet instruments.

Regulators are particularly worried about systemic risk. Today, reliable means for measuring the probability of systemic risk do not really exist. The central banks are nervous because they have no control over one of the main triggers of systemic risk – sovereign risk. Systemic risk can have several origins that test the financial system.

- What if two or three of the big money center banks fail at the same time?
- What if it is not possible to estimate the huge liabilities that will be created, because exposure figures steadily change?
- What if there is a snowball effect which engulfs other big banks, and from there the global market?

Ironically, one of the constraints in global risk management is technology (see Chapter 5). Very few banks have in place the technological infrastructure which would help their top management to properly estimate global exposure in a real-time sense. Legal constraints and technology constraints are both operational risks.

The lag in technology because of old concepts that are not commensurate to current risks is so much more surprising given the amount of money spent on IT. There is no doubt that practically all banks are nervous about risk and exposure both to on-balance sheet and to off-balance instruments. And there is no surprise in the fact that one major British bank has assigned a senior executive to deal with systemic risk.
One of the reasons why financial institutions have been particularly alerted to this issue is that the regulatory authorities are demanding action.

But in all likelihood, the real background factor is their own business sense. At long last they appreciate that the risks they have taken may no more be controllable.

Today, some big banks have a derivatives exposure which runs into trillions in notional principal amounts. At JP Morgan Chase, it is said to stand at $26 trillion; at Deutsche Bank, at $13 trillion; Citigroup and Bank of America have each nearly $12 trillion. While not all of notional principal is toxic waste, even demodulated to bring it down to the level of credit equivalence, this huge exposure is explosive stuff, particularly if the bank faces class actions by shareholders.

Experts suggest that in the case of big banks overexposed to derivative instruments, to a high multiple of their equity, shareholder action is absolutely warranted (see also section 3.7). Avoiding legal risk because of inordinate exposure is a balancing act. It could be performed with some success if, and only if, rigorous standards of risk control are set by the board.

Legislation regarding limits to exposure and financial responsibility has to be clear and unambiguous, with well-delineated lines of personal accountability. As explained, legal risk can be amplified by management risk and IT risk. This is one of the areas of concern to central bankers. Take the international payments system as an example.

Many banks now want real-time bilateral netting, with a further view toward multilateral solutions.

But multilateral netting is very difficult because of differences in laws, legal systems, and supervisory rules.

Currently, most of what takes place in payments and settlements is improvised. Assisted by technology, human ingenuity brings things a notch further, but the necessary global legal infrastructure is simply not there. Until this happens, there is every reason to worry about the extent of legal risk and the uncertainties of litigation. Both damage the operating franchise of global business.

3.7 Huge credit losses, securitized corporates, and legal risk

Let’s face it, the beginning of the twenty-first century has seen a rapid rise in exposure across the board: credit risk, market risk, and operational risk. On 17 September 2002, JP Morgan Chase warned that its third quarter operating profits would be well below those of the second quarter, because losses on corporate lending could more than quadruple, to $1.4 billion.

Not long ago, in the 1980s and early 1990s, there was a time when the securitization of loans allowed banks to discharge some of the credit risk in their portfolio, but by all indications this way of transferring exposure has by now been overdone. On 9 October 2002, Moody’s Investors Service cut JP Morgan Chase’s long-term debt rating to A1. With $713 billion in assets, the credit institution had:
$278 billion in credit derivations
- Versus $207 billion in loans – which is, after all, a commercial bank’s main line of business.

Evidence that shareholders do not appreciate these statistics is provided by the sharp and steady drop in the price of JP Morgan Chase’s equity. But credit institutions that assume huge derivatives exposure are also opening their flanks to legal risk, particularly so when their loans business, too, is in trouble. Loans in default in US banking skyrocketed from $0.9 billion in 1997 to $19.6 billion in 2002.

Many of the JP Morgan Chase loans were made to now-struggling or failed telecom companies like WorldCom, in a bid to win investment banking business. This is an example of where synergy is producing more risks than one is bargaining for. These and other similar bad loans by commercial banks are part of the huge wave of debt turned sour which is flooding the financial system in the US, Europe, and Asia.

As dramatized in Figure 3.3, as of 1 January 2002 there has been a record $200 billion worth of corporate bonds and loans distressed or in default. Worrisome is the fact that this figure doubled in just one year (2001). Because the losses continue to mount, the biggest firms are facing not only an unprecedented credit risk but also legal risk. This comes in the form of a threat of legal action from investors who see themselves as the victims of a:

- Massive deception, and
- Colossal financial drain.

Experts say that the issues described by both these points are a result of securitized corporate loans and other alternative investments sold to individuals and institutional
investors, in the 2000–2002 timeframe, by big banks – without appropriate wording about embedded risks. All sorts of investors have found themselves overexposed with loans made to highly leveraged telecoms and other unstable firms.

Central bankers, bondholders, and shareholders are nervous. But while the regulators are unlikely to go to court against the mismanagers of corporate wealth, the investors might. No JP Morgan Chase shareholder can be thrilled by the fact that the bank wrote off $3.3 billion in bad loans in the nine months through 30 June 2002.

To guesstimate the amount of legal risk which comes at the heel of huge loans losses and big derivative contracts turned sour, one needs to guess how vulnerable the big banks’ enormous portfolio would be to, say, a sharp rise in interest rates (interest rate risk), or a fall in the dollar (foreign exchange risk). The way to bet about assumed derivatives risk is to demodulate this notional principle, or face value, by 6 in a worst-case scenario.³ This will mean a black hole of $4.33 trillion – or 43% of the gross domestic product of the United States – in just one big bank: JP Morgan Chase.

How did we reach that point? ‘The whole financial system has become corrupt,’ says Dr Felix G. Rohatyn, formerly of Lazard Brothers and, also formerly, US Ambassador to France.⁴ Big banks sold off major chunks of their corporate loans to:

- Smaller banks
- Insurance companies
- Mutual funds, and
- Other investors.

Many did so in a booming syndication market of more than $2 trillion. Then they moved on to repackaging consumer loans into securities, from mortgages to credit-card receivables, and sold them to institutions in what’s now a $7 trillion securitization business, roughly divided (at the end of 2002) as follows:

- $3.9 trillion in mortgage-backed securities
- $1.4 trillion in corporates and
- $1.7 trillion in other securitized loans.

Figure 3.4 shows this acceleration in securitization of loans – good and bad. By selling off the content of their loans portfolio, banks have been able to lend to yet more borrowers as they have generated a cash flow that enabled them to reuse their capital time and again. Critics now say that this facilitated:

- Getting rid of loans the banks knew were about to turn sour, and
- Making lending decisions based on investment banking projects, rather than on their own credit judgments.

There are several downsides to this process and each can lead to legal risk. The wholesale offloading of credit risk made the banking system both less stable and an agent of greater volatility. Critics add that the more business loans and corporate loans credit institutions securitized, the more conflicts of interest they faced regarding their decisions and the products they bring to the market.
Figure 3.4 The rapid rise in securitized corporates matches that of mortgage-backed securities

‘This is the first time that the banking system has ever pre-distributed losses,’ says Martin Mayer, a guest scholar at the Brookings Institution. ‘Banks are playing the interest-rate market, and it is starting to explode,’ suggests David A. Hendler, an analyst with CreditSights. Other experts have been expressing very similar opinions.

Investors are angry about these happenings and, as is to be expected, some of the majors are taking legal action. Pension funds and insurance companies are striking back. CalPERs has joined with several other pensions funds to sue JP Morgan Chase and Citigroup, the underwriters of WorldCom’s last bond issue, an $11 billion deal, for alleged lack of due diligence.

Experts say that banks who have entered into the corporates securitization channel may have to pay up to $5 billion to settle over 300 class actions. Though the majority of these court cases involve everything from hyping lousy IPOs to favoring their best banking clients, securitized products that got sour are also in this legal risk picture. On top of that, there are 25 class actions pending against equity research analysts, employed by different firms who gave their clients a biased investment advice.

3.8 Compliance risk: a case study with the Year 2000 problem

Compliance is an operational risk with plenty of legal risk characteristics. The case study in this section comes from the late 1990s. It focuses on compliance regarding...
actions defined by the regulators in connection to the Year 2000 (Y2K) problem. Starting with the fundamentals, the Bank of England has defined Y2K compliance in a rigorous way:

- ‘To be Y2K compliant you must be able to work any date in the 21st century.’

This definition blew out semi-measures taken by some firms and their consultants to face Y2K, like windowing (using 50 years of 1999 and 50 years of 2000) and other half-baked solutions. It also put into question the statement by everybody who claimed in the abstract: ‘We are Y2K compliant.’ Among the critical questions to be provided with factual answers have been:

- Is Y2K compliance a factual and documented statement?
- Even if the adopted IT solution is today valid, for how long may this be true?

This discussion on compliance will become more meaningful if we briefly examine how the Year 2000 problem came around. Computers started being used in other than military applications in 1954, with the first Univac I delivered that year to General Electric. But punched card equipment still dominated the landscape for another 15 years or so, and punch cards (at least the IBM version) only have 80 columns.

There is not much information one can write in 80 columns. Therefore, better be thrifty. In the 1950s and 1960s, the data processors thought there was no reason to spoil 4 columns to write the year; 2 would do. For instance 1955 could be written as 55. This works well if the application is contained in the twentieth century, but it creates lots of problems with dates in the twenty-first. For instance 55 could be interpreted by the machines as 1955, 2055, or the 55th year of any other century. Hence, the Y2K problem, to which there has been no precedent – but there was plenty of legal risk.

Lawyers did not fail to see the golden opportunity Y2K presented for their services. Until the US Congress acted to put limits to litigation in this specific case of tort, doing so just in time, litigation because of Year 2000 problems was thought to put the torrent of asbestos (see Chapter 12) and tobacco legal cases to shame. Experts said the first moves in a decades-long Y2K litigation would be lawsuits against technology companies. They were right.

Getting themselves ready to reap unspoken fees, lawyers attended seminars on how to bring and defend Y2K cases. Many people suggested that there would be more lawyer-driven cases, than customer-driven ones. Andrew Grove, of Intel, predicted that the US would be tied down in a sea of litigation because of the aftermath of the Year 2000 problem.

It did not happen that way because the law changed. Yet the prediction that technology companies would be in the front line came true. The first Y2K legal case has been by Atlas International, a New York computer vendor, against Software Business Technologies (SBT). The reason was that SBT asked for fees instead of providing a free patch to its software. Macola, a Chicago accounting software vendor, and Symantec were also sued by their clients.

The next domain in Y2K litigation was breach-of-contract suits against corporate officers of publicly quoted companies. The third wave of litigation was expected to involve insurance firms, as defendants sought to force their insurers to cover:
Experts suggested at the time of this third wave that Year 2000 litigation would, in all likelihood, last more than 10 years. Had the US law not changed, and had regulators taken it easy instead of pushing hard the issue of compliance to Y2K fixes, this prediction would have materialized.

The size of the Y2K problem was tremendous. Each big company had 20 million to 30 million programming instructions in its applications software library, which had to be reviewed and all Y2K bugs corrected. Correctly, rather than having to face mammoth maintenance cost while still being left with old, patched-up software, the best managed companies took this opportunity to revamp and renew their applications programming library.

This has been the positive side of Y2K compliance. Yet legal costs of the Y2K bug still run high. The programmers’ and computers’ cost of Y2K finally stood at the $300 billion to $600 billion range, depending on how the costs are counted; legal costs and settlements in connection to Y2K litigation meant more money spent on this problem. In the US alone, 375 large law firms were active in Y2K litigation mainly involving software products that were materially defective in a Year 2000 sense, and the vendor failed to disclose it.

Before the US law changed, some 200 disputes have been decided out of court with each settlement involving between $1 million and $10 million – even if none of the plaintiffs had so far suffered actual Y2K-related losses. There has as well been an alarm connected to Year 2000 litigation in the insurance industry. The Independent Insurance Agents of America estimated that it could reach $65 billion.

It did not happen that way, but insurers did not know it at the time and, therefore, insurance companies moved quickly to prevent suits by revising their policies, to exclude Y2K claims. The ground for this revision of insurance policies has been that Y2K perils were not known to exist when the policies were written. As a result, premiums were not collected for such coverage and the coverage itself did not exist.

Certified public accounts, too, build up legal defenses. In the UK, the Institute of Chartered Accountants warned that auditors may qualify accounts if there is no adequate record of preparations to adapt computers for Year 2000. While small, privately held companies did not see this as a threat, they were bound to face problems with loan approvals without an:

- Unqualified audit, and
- A Y2K compliance plan.

Had Standard & Poor’s, Moody’s Investors Service, and the other independent rating agencies taken account of the Year 2000 problem in companies rating? ‘We have attempted to factor it in,’ said Clifford Griep of S&P in a meeting we held in New York, ‘but this is difficult for an outside observer, beyond questioning management.’ In Griep’s opinion,

- The Y2K is an opaque risk,
- Therefore, S&P encouraged disclosure.
To get as much information on Y2K as it could, S&P sent out a questionnaire. An interesting finding has been that in lots of cases management did not even know where the company stood in Y2K compliance. Few boards were aware of the fact that Y2K problems could hit every firm, including their own. The more far-sighted people suggested that the Year 2000 problem was a good opportunity to:

- Make companies more transparent, and
- Exercise a pro-active supervision by regulators.

Being pro-active has been a ‘must’ because no one was really out of Y2K danger. The regulators got active in promoting Year 2000 compliance because they appreciated that contagion could spread from systems exposed to the millennium bug, to those that had been streamlined. Even organizations who thought they have made the necessary technical adjustments could be vulnerable to disruptions if their business partners, clients, and suppliers failed to take care of Y2K compliance. As time went on, clauses were added to supplier contracts requiring them to be Y2K compliant. This is another reason why the Y2K problem offers a good precedent to several of the legal risk challenges facing companies in the twenty-first century.

Notes

1 The role of rating agencies is discussed in Chapter 13.
4 BusinessWeek, 7 October 2002.
5 BusinessWeek, 7 October 2002.
6 Herald Tribune, 4 May 1998.
4 Management risk

4.1 Introduction

In the aftermath of the big bankruptcies of 2001–2002, particularly in the United States, experts said that poor management is the most important operational risk. The Bank of England had already pointed that out through a 1997 study that proved that mismanagement was accountable for 19 out of 22 bank failures (see Table 1.1). Other studies have pointed in the same direction, presenting regulators with a salient problem regarding the financial institutions under their control.

‘Management risk’, said the senior executive of one of the global banks I met in London in the course of this research, ‘is the No. 1 operational risk. It represents one out of six or seven op risk cases. Next in importance is event risk, including internal and external fraud.’ Hence, management risk is more of a salient problem than fraud – the classical operational risk.

How poorly are companies really managed? Between the bear market and prosecution of CEOs for creative accounting and other manipulations, investors badly want to know what is their corporate governance exposure. Another interesting question is how it happened that all of a sudden management risk came up to the No. 1 spot in competition to legal risk (Chapter 3) and technology risk (Chapter 5).

The Financial Accounting Standards Board (FASB) says it is looking to refashion its financial statement reporting standards so that companies would not be able to find as many loopholes in financial reporting as they do now. But FASB’s regulatory overhaul will take years. In the meantime operational risks relating to management’s actions and inactions will persist, and with them:

- The risk of tort, and
- The bending of business ethics.

Here are a couple of examples, with more to follow in the body of this chapter. In the second week of June 2002 Sam Waksal, who until a few weeks earlier was chief executive of ImClone Systems, was arrested on charges of insider dealing. His biotech company was already under regulators’ scrutiny for misleading shareholders by withholding sensitive information. Waksal has been formally charged for wrongdoing.

Insider trading is not the only flaw. One of the best examples on how inside management positions are in a win–win situation, is what has followed the bankruptcy of Kmart. As it has been reported in the press, if the company’s new chairman James Adamson brings Kmart out of Chapter 11 before 31 July 2003, he will get a pay package of about $8 million, subject to bankruptcy-court approval.
Whether through extravagant bonuses or options, excessive pay levels are also a management risk.

Neither is the $8 million a bankrupt company would have to pay its chairman the only blood-letting. Charles B. Conaway, Kmart’s president, will also be richly rewarded. According to a clause on Kmart’s performance, and to some other contractual clauses, he could get $16 million over 18 months. All this at a time when:

- Kmart struggles for its survival, and
- Even if it makes it out of bankruptcy it would not automatically become an enterprise able to afford such fat pay packages.\(^\text{2}\)

Mismanagement is what brought Kmart into bankruptcy in the first place, and members of its board of directors suffered the consequences of their actions and inactions. The board’s troubles include multiple investigations of company accounting, a $501 million profit restatement, and a federal grand jury probe into pay practices. Fat rewards are incompatible with the fact the board has been passive as the company’s performance deteriorated before a bankruptcy filing in January 2002. And while Kmart was heading for the rocks the board approved $28 million in retention loans to 25 top executives.

Sweden’s Ericsson is another informative case. In 2001 and 2002 it posted $5 billion in losses, and in October 2002 its formerly highly flying shares were selling at under a dollar – as a penny stock. Because new client orders plunged 49%, the company had to lay off 40,000 of its 110,000 workers, but the company was not forthcoming with cancellation of executive bonuses because of poor performance.

In Sweden, Ericsson’s president Kurt Hellström is said to be the most hated man in the country. He is regularly vilified in the press. In 2001 one paper made its front page into a mock ‘Wanted’ poster.\(^\text{3}\) Another consequence of mismanagement is that Ericsson’s woes, and those of its suppliers, have shaved nearly half of 1 percent off Swedish gross domestic product (GDP).

4.2 Management risk in the power crisis in the United States

It is not always appreciated that the mismanagement of big private companies, who are employers, clients, and suppliers of a certain size, can hit the national economy like a rock. This is particularly true if these companies belong to a country’s more sensitive sectors. The power crisis of 2000 and 2001 in California, and more generally in the US Pacific region, provides a vivid example of operational risk associated to corporate management.

Theoretically, the 2000–2001 power crisis in the United States was spiked by high natural gas prices. Practically, the primary reason was structural defects in the power industry which could mean the end of cheap electricity, which during World War II and the post-war years made the Pacific Northwest the center of the US aluminum industry.

Half a century ago, when I was a student at the University of California, energy companies pushed hard to increase power consumption – and the public was happy...
to oblige. But times have changed. In 2001, the Bonneville Power Administration, a federal agency that supplies about half of the region’s power, has requested its utility customers to implement load reductions with a view to:

- Cut down demand, and
- Stabilize wholesale power rates, which spiked as shown in Figure 4.1.

The result of this new policy has been that aluminum capacity, totalling 1.43 million metric tons of annual output, which roughly represents 8% of Western world capacity, has been significantly reduced in the US Pacific Northwest. To appreciate this reference, and its effect of energy shortages, it is necessary to recall that the production of aluminum is a very energy-intensive process requiring:

- Bauxite to be refined into alumina,
- Then turned into aluminum through smelting.

Figure 4.2 gives a birds-eye view of production costs, with power at the No. 2 spot. Low cost smelting can only be attained through the availability of low cost and plentiful electricity. This is why many smelters are now found in developing countries where electricity and labor costs are very low. The US Pacific Northwest was an exception, and the reason for this exception was its cheap power.

What happened in 2001 is a livid example of operational risk and its aftermath. In addition to the structural defects that were experienced in California, acute seasonal variations have added to the already serious power problem. Water levels in the region’s dams are so low that the Bonneville Power Administration was forced to declare an emergency in order to move water out of storage that would have otherwise been saved for juvenile salmon migration.

The next major structural factor in the US power crisis has been the Pacific region’s seemingly ravenous demand for electricity. The resulting crisis put the end of clean
power in California squarely on the table, and with it the changing nature of the energy business, in which deregulation has played an important role.

Experts, however, add that while all these factors did play a major role, the lion’s share of the energy crisis belongs in the realm of speculation. In November 2002, the State of California accused the energy traders of manipulating the market to cause the energy crisis. Heightened scrutiny led some of the traders to admit to wrongdoing, and lawsuits followed. In the aftermath:

- Some energy trading firms watched their share prices plunge below $1.
- By mid-2002, six months after Enron’s default, several energy traders put their once highly profitable business up for sale.

California’s major power production companies went bankrupt (see section 4.3), but also, nation-wide, other energy companies were confronted by credit woes, in spite of the hefty increase in the price of their produce. In real life, this difference between what might have been a cash flow and earnings glut and the companies’ precarious financial situation is made by mismanagement.

By mid-October 2002, the Wall Street Journal said that ‘The U.S. electric power industry is in its worst credit crunch since the Great Depression,’ and it may get worse as electric-energy firms will have to roll over about $50 billion in short-term debt. Standard & Poor’s suggested that the debt load contracted in anticipation of growth in a deregulated market and led to half the electric power industry being downgraded to a triple B credit rating.

- In the first nine months of 2002, there were 135 credit downgrades of utility holding companies, leaving one-third of the major firms on the watch lists.
- Of the 320 companies followed by Standard & Poor’s, 11% were rated at junk bond levels (double B or worse).
Apart from the giant California electric utilities, which filed for bankruptcy protection, Allegheny Electric defaulted on its credit agreements and TXU Corp said a credit downgrade of one of its European units may trigger an early bond repayment. At the equity side, Standard & Poor’s Electric Utilities Index fell to its lowest level since the early 1990s. Both bondholders and shareholders paid for the energy companies’ mismanagement.

4.3 The changing nature of energy business calls for high grade management skill

The changing nature of the energy business has meant that spot-market price speculation has replaced long-term contracts. This process, it should be noted, is not limited to the energy market. Similar trends are under way among other commodity producers, some of them having preceded the energy market, and all of them falling in an area which shares common ground between credit risk, market risk, and operational risk. Here is an example:

- At present, a single contract for West Texas Crude trades 15 times before it expires.
- This means that for every new barrel of oil pumped onto the market, 15 new paper barrels of oil are traded.
- It also provides plenty of opportunity for operational risk problems, including management risk and legal risk.

Both are reflected in prices. California’s State Attorney General has sued electricity producers for allegedly overcharging consumers during the state’s power crisis.\(^5\) The Federal Energy Regulatory Commission has been slower to act, but California has put legal risk associated to energy manipulation on the table.

The leverage provided by derivative financial instruments has been amplified by organizational acrobatics. An example of operational risks is the transfer of electricity generating capacity out of regulated utilities, which both weakens the ability of state regulators to stop prices from spiking (a market risk), and paves the way for a rapid consolidation of mighty but highly geared power firms (a cross between credit risk and op risk). Enron provides an example – albeit a very bad one.

Looking at these changes, it is useful to recall the comments of former Enron president Jeffrey Skilling to BusinessWeek, in an interview published on 12 February 2001. Asked who should own the power plants, Skilling replied: ‘Financial institutions, insurance companies, and pensions funds . . . [But] they don’t like to operate things. They don’t like to take the risk on commodity prices. We ought to do that stuff and then sell them the underlying asset with kind of an annuity return.’

The fate of Enron, which filed for bankruptcy on 3 December 2001, is well known. Less known is the fact that the policy Skilling described led to the spike in energy prices – but also to the demise of Enron itself, which I view as an operational risk because it involved so much of management risk. Subsequently, the spike in prices put California’s two largest utilities, Pacific Gas & Electric (PG&E) and Southern California’s Edison (SCE), under financial stress and led to their bankruptcy.
Both PG&E and SCE were charged sky-high prices for the electricity they bought from the energy traders. Poor management lost control of the situation and they defaulted. Neither company could pass the higher energy costs for purchased electricity on to the customer. They accumulated approximately $12 billion in debts to purchase the higher-priced electricity, on top of another $7 billion of debt they already had in their books. At the end, they could not:

- Pay the debt, and
- Face their other obligations.

This is an operational risk which morphed into credit risk. PG&E and SCE owed substantial sums of money to Bank of America, Wells Fargo, and JP Morgan Chase, as well as to at least two dozen other banks, including Deutsche Bank in Germany and Crédit Agricole in France. Their lenders also included insurance companies, pension funds, and the Treasuries of California counties.

To face this crisis, the State of California created its own operational risk. It took $400 million from the Los Angeles Water District’s Treasury, and used it to buy electricity and sell it, at lower prices, to the PG&E and Southern California utilities. What this meant is that the Los Angeles Water District has been subsidising the speculators, so that the utilities could find a way out of the higher and higher costs of energy.

The decision to use water money to feed the speculators was flawed; it temporarily eased the energy crisis, but it did not avert the bankruptcies, as the numbers show. California’s total costs for electric power, which were about $7 billion a year until 1999, soared to $27 billion in 2000. According to some reports, they reached nearly $70 billion in 2001. About two-thirds of California’s state budget, which till then had America’s largest surplus reserve fund, disappeared in the first quarter of 2001. As the state’s giant energy companies fell, the smaller, in-state power-generating firms went out of business or took their power off the market.

Economist Steve Cochrane reminded the readers of the *San Francisco Chronicle* that ‘everything we produce or consume requires power’, and he predicted that the price tag for goods produced in California, and consumed all over the country, will rise 2% to 4%. This was a conservative estimate. The Bureau of Labor Statistics said that the consumer price index for the Bay Area of Northern California had already risen 6.5% from February 2000 to February 2001.

California’s citizens and its struggling utilities must be envious of their counterparts in New England. Several times during the past few years New England utilities have stood on the brink of blackouts like those that plagued California. Each time, however, the New England region was saved because:

- It had adopted aggressive energy conservation programs to cut electricity demand, and
- These policies saw to it that the power consumption curve bent somewhat and power outages were averted.

This is a good example of how operational risk can be kept in control through proper policies, provided these are established in time, are observed by everybody,
and are shielded from the influence of covert interests and pressure groups. As the New England experience suggests, easing energy woes is not just about increasing supply, it is also about reducing demand through proactive policies which see to it that consumption tapers off, at least until supply catches up with increased challenges.

4.4 An operational risk which morphs into major credit risk

The mismatch of energy supply and demand in the US Pacific Coast region had major consequences that went well beyond the original operational risk. The effects built up over time, with the result that the volatility of equities of US power utilities increased by 220% between 1993 and 2000. The volatility of the Standard & Poor’s electric utility stocks reached 22% in 2000 while in 1993 it was 10%.

Related to this has been the change in volatility of cash flows of electric power companies. NERA, a New York-based economic consulting firm, owned by insurance brokerage Marsh & McLennan, analyzed the utilities using cash flow at risk (CFAR). For each company, it assembled a group of similarly situated firms. If one member of this group had recently suffered a big cash flow shortfall, this was taken as a sign that the same thing could happen to others. It did. Four key measures had been chosen to help in determining how a company is grouped:

- Market capitalization
- Company profitability
- Stock price volatility, and
- Riskiness of the product line.

At the basic level, this approach makes sense. One shortcoming, however, has been that NERA lumped all the big electric utilities into the same riskiness group, but companies don’t have to be in the same industry to be lumped together. Also, like value at risk (VAR), CFAR is based on historical data; it cannot forecast the impact of changes in business. Therefore, it could not have foreseen something like the California power shortages and price spikes.

This is a good lesson in model risk (see also Chapter 5) because sustained price spikes were at the origin of PG&E’s and SEC’s downfall. Where NERA can help is that the emphasis on cash flow can give warning signs to banks before they throw good money after bad in loans to firms under stress.

Which were the banks that did not interpret a fall in cash flow as a signal of coming trouble? In 2000, Bank of America led a group of credit institutions that extended a $850 million credit line to PG&E. This became part of $3 billion in delinquent credits Bank of America had to write off in 2001, as in April 2001 Pacific Gas & Electric filed under Chapter 11.

JP Morgan Chase had been the leader of a $1 billion credit to Southern California Edison. TIAA-CREF, too, had $336 million worth of bonds issued by the two California power utilities. The Prudential Utility Fund, America’s largest utility sector fund, managed $4.5 billion in utility stocks. Big chunks of it have been at risk, in a cascade of power company defaults.
Investment funds that held stocks and bonds issued by the utilities lost their money. The manager of the $1.6 billion Franklin Utilities funds noted that ‘the reverberations would be widespread, in the near term’. There were about 40 mutual funds specializing in utility stocks for decades considered to be the safest possible investment. Their total exposure was some $30 billion at risk in the case of a torrent of defaults.

Municipal districts, too, were exposed. The Orange County and Riverside County in California, the first already hit some years earlier because of the collateralized mortgage obligations (CMOs) fiasco, held $40 million in utility notes and commercial paper each. The income from those investments typically finances public schools, public transportation, as well as other essential infrastructure. In the aftermath of the losses budgets had to be cut.

In financial terms, California’s operational risk reached international dimensions. In January 2001, Barclays Bank issued a statement that it need not make provision against its exposure to the default by PG&E, but refused to reveal what was its total exposure. Straight afterwards, ABN–Amro bank said that it was not at risk from the California crisis. At Wall Street, however, analysts noted that ABN–Amro was part of a syndicate that had a $4.2 billion agreement with PG&E.

While some of the details connected to red ink have been slow to emerge, it was reported that Japanese, German, and South Korean banks also had substantial exposure in the US utility sector. Experts suggested that because utilities are generally considered to be sound investments, it is not surprising that the problems of two well-known energy companies in California spiralled world-wide.

Neither were investors in energy utilities and banks that lent to near-bankrupt firms the only parties hit by losses. Bond insurers and guarantors were paying out claims on defaulted California utility debt. In January 2001, the Ambac Financial Group reported that its municipal bond division made interest payment on a bond for a California utility that was on the brink of bankruptcy, when it defaulted on payment. In total, Ambac had $75 million in exposure to SCE, and $73 million to PG&E.

Also, MBIA said that it expected claims of about $660,000 because of missed interest payments by Southern California Edison. Moody’s reported that MBIA had a total of $445 million of exposure to Edison debt, and $590 million to PG&E debt. Financial Security Assurance, part of the Belgian-French bank group Dexia, also had millions of exposure to SCE and PG&E. Bermuda-based ACE had about $138 million in aggregate exposure to both utilities, representing 15% of its capital base.

The size of the largely unexpected bankruptcies was of such dimensions that the thought that even California’s two largest public power utilities might default on billions of dollars of short-term debt threw shareholders, bondholders, and lenders into a panic. Belatedly it was realized that a decade of poor management had brought the formerly mighty energy utilities to the abyss.

Speculation mounted on how the final bill would look. Experts said that default by the two California energy companies would set off at least $20 billion in cross-defaults on the utilities’ other debts, and possibly the loss of electrical power in the state. This projection was based on the fact Southern California Edison and Pacific Gas & Electric had suddenly built up a horrendous short-term debt, borrowing from banks to pay wholesale electricity prices two orders of magnitude above what they were a year or so earlier. They were paying these hyperinflated rates to:
These four companies had bought up California’s power-generating plants under the deregulation act passed by Congress in 1996. Enron was still a going concern in early 2001, and in an arrogant way it was leading the pack of speculators blackmailing utilities in many parts of the US for power and natural gas. At the time, Enron’s shareholders, bondholders, and lenders had no inkling of what was in store for them a few months down the line.

In an effort to stave off the crisis which hit California as a result of management risk, Gray Davis, the governor, held emergency meetings on 28–29 December 2000 with president Bill Clinton, Treasury Secretary Lawrence Summers, and Federal Reserve Chairman Alan Greenspan. Bloomberg News service quoted a Chase Manhattan economist warning that with US banks shutting off lending, ‘a credit issue can pose the potential to become a systemic threat’.

Bloomberg drew an analogy between the Federal Reserve’s emergency bailout in September 1998 of Long Term Capital Management (LTCM), aimed to save the stock market and derivatives market, and the looming default of California’s utilities in 2001. LTCM’s failure was the result of another major management risk. The Fed of New York was more successful in its 1988 salvage operation than the US government in keeping the utilities above water.

As one misfortune never comes alone, the financial crisis of the California power utilities triggered a natural gas crisis as well: By late 2000 pipeline companies, including Enron, refused further sales of natural gas unless Southern California Edison and PG&E paid cash in advance for the deliveries. They also threatened to cut off electricity sales on the ground that the utilities would not be able to pay for them.

Then, on 4 January 2001, California’s State Public Utility Commission raised the electric rates for customers of Southern California Edison by 9%, but as the subsequent bankruptcy of PG&E has shown this did the utilities no good. Instead, the utilities’ stocks fell sharply, and Moody’s Investors Service warned of further downgrade in their credit rating. The irony is that after the lambs were eaten, the wolf, Enron, died as well.

4.5 The derivatives losses of EDS: a different management risk

In the week of 16 September 2002, the equity of Electronic Data Systems (EDS), the computer services insourcer, fell more than 52% on its warning that earnings would be sharply lower than expected. Following that surprise profit warning by EDS’ management, Merrill Lynch touched off a new rout after saying it believed the second largest IT insourcing company in the world was facing a major loss from its use of derivatives. Gambling and losing with derivatives:

- Hit hard the insourcer’s bottom line, and
- Made it more difficult for the firm to fund large insourcing deals, because of their up-front capital costs.
On 24 September 2002 the shares of Electronic Data Systems plunged for a second time in less than a week. Investors were concerned about the company’s huge loss on its derivatives trades – definitely a non-core business – that could wipe out its 2002 cash flow. The market’s fears knocked a further 29% off the company’s battered stock price, with shares closing down $4.84 at $11.68. Figure 4.3 dramatizes the downfall.

Speculative losses are always a sign of management risk, and customers took notice. After EDS shares began their free fall, in mid-September 2002, Procter & Gamble delayed awarding EDS an expected $8 billion outsourcing contract. The message the market got out of this piece of news was that:

- *If* Procter & Gamble, considered to be a well-managed company, kept its distance,
- *Then* this could be related to worries about the survivability of EDS, and the operational risks assumed by its clients.

Incidentally, this has not been the first time EDS faced management risk. When Ross Perrot quit General Motors’ board, the company he left behind became more or less a mismanaged outfit. The automobile manufacturer was not versatile in selling computer-related services. Eventually, GM decided that it had better spin off EDS.

With the spin-off, management risk seems to have increased. In 1999 Richard H. Brown became the CEO of EDS, and the new chief executive focused his attention on outsourcing deals that provide steady revenue growth over their multiyear lifespan. This means emphasis on large, longer-term insourcing agreements which, however, have very significant start-up costs. These costs involve:

- Buying the client’s data center
- Hiring its employees, and
- Carrying on a swarm of financial and technical responsibilities connected to insourcing.\(^9\)
These deals were supposed to give EDS rich cash flows and ‘guaranteed’ profitability. In reality, however, they had a negative impact on both cash flow and profitability – at least in the shorter term. As if this was not enough, it subsequently came out that management misguided itself (and others) because EDS used a method known as percentage-of-completion.

- With it, costs and payoffs are estimated over the life of the deal,
- Then, as work is completed the customer is billed on a monthly or quarterly basis.

This approach is not uncommon with large projects, but it constitutes an operational risk because it inflates costs by bringing them upfront in a medium-to-longer term timeframe. It also makes miscalculations very costly. When EDS, or any other company, overestimates a contract’s profitability, it has to:

- Take a charge to cover the loss, and
- Retroactively apply a lower, revised profit margin.

Besides that, the percent-of-completion method leaves ample room for wishful thinking and for errors, which add a great deal to the company’s liabilities. The reader should keep in mind that, unlike banks but like certified public accountants, consulting companies and insourcers do not have a treasury able to withstand major financial shocks.

Severe shocks that put a company in peril can arise for several reasons. One of them lies half-way between operational risk and counterparty risk. In July 2002, EDS had to swallow $101 million losses from its huge contract with WorldCom when the latter went bankrupt. It also had to write off $69 million from its insourcing deal with also bankrupt US Airways.

These, and others, have been operational risks related to the type of business EDS had decided to pursue – and they were beyond the domain that could be described as expected losses. If indeed they were expected, then EDS should not have entered into longer-term insourcing contracts with companies who were on the brink of the abyss.

Management risk at EDS did not end there. The steep decline in the company’s equity since the mid-September 2002 profit warning exposed its derivatives’ extracurricular activities. Like some other big technology companies, EDS used derivatives to try to reduce the cost of issuing shares under its employee stock options plans.

Steve McClellan, an analyst at Merrill Lynch, said EDS had settled derivative obligations related to 3.7 million shares on Friday 20 September 2002, at a cash cost of $225 million. Rod Bourgeois, an analyst at Sanford Bernstein, added the high-profile nature of EDS’ profit warning could attract the attention of the Securities and Exchange Commission.

Other analysts were just as cutting in their comments. In different terms, EDS fell prey to its own greed using options for hedging the growing (if irrational) wave of executive options. The exact details pertaining to this particular foray into shareholders’ equity are not precisely known, but participants at my London seminar on outsourcing and insourcing volunteered, as an example, the case of executive
options-and-derivatives at Storebrand, the well-known Norwegian insurance company.

To cover the stock options it gave to its executives, Storebrand bought options from an investment bank. However, because the management of the insurer found that these hedging options were too expensive, it asked for better conditions and the investment bank offered to reduce the price, if no compensation were provided in case the insurance company’s stock price dropped by ‘x’ percent. It did, and the same had happened to EDS.

In Storebrand’s case, as long as the insurance company’s price increased, there were no problems and no complaints. But then the market did not oblige; the stock price went down by more than ‘x’ percent. This saw to it there was no more option coverage. As a result, the insurance company lost money and the executive options ended by diluting shareholder equity in a big way. Quite likely something similar has happened to EDS, and to many other companies whose management has become some sort of sorcerer’s apprentice.

- The hedge provided by option coverage is often seen by management as a sort of compensation for the executive options because, when exercised, the options would be booked at market price.
- In a bear market, however, such plans are chicken-brained. There are made by mismanagers who think it is possible to have your cake and eat it too.

With this sort of background in terms of management risk, financial analysts were puzzled about another questionable decision by EDS, namely to enter the market of treasury outsourcing. Some analysts asked why a company that could not manage its own treasury should want to manage the treasury of others – let alone the fact that companies which are outsourcing their treasury are simply looking for trouble.

Investors have also been questioning the generous 2001 $55 million pay package of EDS CEO Richard H. Brown, over and above the costly bet on EDS’s stock options. Management risk was further brought under the spotlight when the company said third-quarter profits would fall as much as 84% short of estimates, to $58 million, due to slowing client spending and write-offs from problem contracts. Investors were not pleased by the fact senior management gratified itself with millions when:

- Revenues, which were already revised downward to a 4–6% growth rate, were expected to decline by another 5%, and
- The outlook for the fourth quarter of 2002 was dismal as well, with no clear signs of short-to-medium-term recovery in 2003 and beyond.

In conclusion, management risk and the options gamble left EDS $225 million poorer. Investors were angry not only for the losses but also because all this was done in secrecy. EDS said it did not disclose the deals because they were made in the ‘normal course of business’. But the news set off fears that, as management risk mounted, EDS could face a cash crunch and have difficulty competing for capital-intensive contracts.
4.6 Management risk at Tyco International

Based in Bermuda with headquarters in Exeter, New Hampshire, at its high-water mark Tyco International had 240,000 employees and its products ranged from security systems and safety devices to financials and syringes. In the late 1990s the conglomerate was attracting the market’s attention in a big way. Its investors considered it to be a sort of multi-identity holding company. But, in February 2002,

- Fears about its opaque accounting had branded Tyco ‘the next Enron’, and
- As investors fled, the market vaporized more than $160 billion in Tyco’s capitalization.

Many lessons can be learned from the demise of Tyco. One of them is that investor indulgence does not help. When the shares of Tyco International were still rising in 1998, some of the main shareholders proposed that the company’s board should be restructured to make a majority of its members independent. This resolution was defeated, partly because Fidelity Investment voted against it.

More independent directors might not have saved Tyco, but analysts did not fail to note that Fidelity’s vote consistently supported the position of Tyco’s management. The fact is that investors tend to abdicate their role as company owners:

- When share prices soar, many institutional investors vote with management.
- Then, when things go wrong, some institutional investors admit that, as equity owners (on behalf of individual savers), they should have done more to curb corporate excesses.

Because they had shied away from their responsibilities, institutional investors had only themselves to blame when management risk hit home in a big way. The market gave no reprieve; it saw to it that Tyco’s $12 billion-plus in commercial paper and other debt obligations coming due through June 2002 came into the danger zone. CIT, Tyco’s financial arm, said that an $8 billion bank line it tapped and another $4 billion to $5 billion more in securitization facilities, was covered for five months or so. The market had its doubts.

- CIT was America’s largest independent commercial-finance outfit, before Tyco bought it.
- Suddenly, it was faced by enormous capital needs and it had trouble responding to them.

Even if CIT’s problems were not present, Tyco’s CEO, L. Dennis Kozlowski, had to deal with a mountain of debt left over from the $63 billion acquisition spree he went through between 1995 and 2001. After Enron went to the dogs, analysts and investors became aware that, by December 2001, Tyco’s industrial companies had debts of $28.3 billion. This was more than 40% up from just $20 billion in March of that same year.
When this news became public, as 2001 came to an end, Tyco’s stock slid in a matter of a few days to about $23 from $53.
When Standard & Poor’s cut Tyco’s credit rating by three notches in one shot, it effectively shut the company out of the commercial paper market.

Left without clout in a capital market suspicious of its financial condition, Tyco had to draw on its $8 billion backup bank lines of credit. Some analysts suggested that if dozens of companies were forced to follow, banks might soon face a liquidity crisis of their own. Others pointed out that management risk is somehow often able to lie dormant, until it explodes in a spectacular way.

Tyco is a good example of how some companies keep massaging their numbers, and take pains to avoid regulatory disclosure. Eventually, the market retaliates. The moment came when Tyco International was hit the hardest among S&P 500 companies: its stock plunged 51% in the first five weeks of 2002, and the slide gathered speed after the company said it had spent $8 billion since 1999 on acquisitions it had not fully disclosed to shareholders. Figure 4.4 shows the equity’s impressive ups and downs.

Yet even after Tyco’s equity had crashed, some analysts kept on recommending it to investors as a double strong buy. On 25 April 2002, a comment from Merrill Lynch, signed Phua Young, CFA, first vice president, and Farukh Z. Farooqui, vice president, stated in big letters:

- ‘Stock is a good value, Strong Buy’
- ‘Long Term, Strong Buy’

The more detailed comment was: ‘Liquidity looks to be adequate. Near term, the change in strategy could require some time for investors to digest. However, even
more importantly, the company’s financial position appears to be good.’ To say this is utterly misleading is to state the obvious. Some analysts render investors a negative service – which is an operational risk.

What those two analysts essentially advised investors was that Tyco is a good value stock for patient people. To their belief, the shares were attractive value because: ‘As Tyco delivers results, and improves transparency, the shares and the P/E have healthy upside potential.’ According to the two analysts’ opinion, potential catalysts included:

- A higher level of confidence in management to execute (!)
- More in line results with strong cash flow (!)
- Discounting of the economic recovery
- Overcoming the transparency issue.

Listen to that ‘higher level of confidence in management’ four months after the leveraged empire began to unravel. Trying to pull itself up from its shoestrings in January 2002, a demoralized Tyco was making plans to split itself into four different companies. The market did not take it kindly, and Kozlowksi retracted.

In early February 2002 Tyco cancelled the planned initial public offering of CIT, its financial arm, cutting, at the same time, the company’s full-year earnings estimate. Things had not improved a single notch when in late April 2002 Merrill Lynch recommended the stock as a strong buy.

By early May 2002, after Tyco International had abandoned plans to split itself into four companies, and after it unveiled a $1.9 billion loss in the second quarter, management said the firm would cut 7100 jobs and close 24 factories, mainly in telecoms and electrical equipment, due to weak trading conditions. At the same time, Tyco announced it would continue with an initial public offering of CIT, which it valued at $6.5 billion.

At Wall Street the experts doubted Tyco could raise that much money from the sale of CIT. Even if it did, it would still face a hefty loss. Tyco had bought CIT for almost $10 billion in cash and stock in 2001 – less than a year earlier. Management risk in this case stood at about 50% of CIT’s value. More precisely, at 54%, as CIT was finally sold for $4.6 billion. That’s one way to put a price tag on management risk.

The prospect of somehow getting some badly needed cash from somewhere was enough to temporarily put a lid on the tanking of Tyco’s stock price. It also, up to a point, smoothed the gyrations of its bonds. However, drawing down the parent company’s and CIT’s bank lines contributed to more rumours. Tyco was caught in a spiral.

- A plan that it was thought would boost the share price by 50% backfired and actually cut it in half.
- As its financial condition turned from bad to worse, Tyco took one big write-off after another.

In October 2002 the write-off was some $2.5 billion for its disastrous foray into the undersea cable-telecom market. This came on top of a $6.7 billion write-down it took in early 2002 on the sale of Tyco’s CIT for a mere $4.6 billion. Averting a liquidity
crisis was not easy. While the sale of CIT helped boost Tyco’s cash level to about $7 billion, nearly half of its short-term debt, which by then stood at $13 billion, was coming due by the end of 2002.

- As previous estimates of cash flow continued to be downsized, it looked like Tyco could come up way too short of what it needed.
- And there was still an awful lot of uncertainty, because lower margins and higher tax rates cut its earnings.

Companies that have gone through similar pains know that fire sales are no good way to raise cash, though they are evidence of bad management. Being squeezed for cash to the point of oblivion, Tyco had no chance to get more than a fraction of the premium paid by Kozlowski to buy companies during the bull market. Deeply discounted sales also forced further write-downs in the bloated $27 billion of goodwill Tyco still carried on its balance sheet. This, too, was a miscalculation and therefore an operational risk.

4.7 The CEO should be an example of virtue, not of malfeasance

Socrates defined virtue as knowledge that cannot be taught. If so, there are no teachers of virtue though there are virtuous people. Judging from the long list of prosecution counts which piled up in 2002 against Tyco’s former CEO for alleged accounting fraud and tax evasion, Dennis Kozlowski was no virtuous person. He simply represented another example of management risk which became part of the problem of corporate America.

One of the things Kozlowski has in common with Kenneth Lay, Enron’s former CEO, is that he turned an obscure company into a high-powered conglomerate. Tyco originally was a New England electronics maker. Enron used to be a gas pipeline. Another common characteristic is that both companies were a blip in industrial history: They started low, leveraged themselves, rose fast, and then plummeted to ground.

The executive life of Kozlowski, while chief of Tyco International, was characterized by spectacular spending during the boom times of the stockmarket and of the firm. Ironically, however, it was alleged tax evasion in New York which first landed him in legal trouble.

The original charges brought against Kozlowski alleged that he evaded sales tax on works of art, aggravated by grand larceny, corruption, falsification of records, and securities fraud. If convicted, he could face decades behind bars. Also charged are Mark Schwartz, former chief financial officer, and Mark Belnick, former corporate counsel of Tyco.

As time went on, more charges accumulated. By June 2002, Dennis Kozlowski faced new challenges because of alleged tampering with evidence, as law enforcement officials pursued their investigation. He was arraigned in New York State Supreme Court on charges that alleged he removed a shipping document from files kept at Tyco’s offices at Boca Raton, Florida, before the file was delivered to the office of Robert Morgenthau, Manhattan District Attorney.
Other top brass at Tyco also came under spotlight, after the charges against Kozlowski sparked a broader investigation of Tyco’s affairs, including whether there was a possible misuse of company funds to buy homes for senior executives. Tyco’s new management filed lawsuits against Mark Belnick alleging that he received inappropiate payments.

The strategy of Tyco’s new management was that of suing to recover allegedly looted funds and other assets, including a $17 million Fifth Avenue apartment, a $7 million Park Avenue apartment, another $5 million home, and the $30 million compound in Boca Raton, Florida. Smaller items allegedly bought with company money included a $17,000 sponge bag.

The Securities and Exchange Commission has also been examining whether the conglomerate’s financial statements properly reported the dealings of its senior executives. Kozlowski was accused by the SEC of running his company like a ‘private bank’, handing out hundreds of millions in unauthorized loans, and lavishing exorbitant gifts on himself and his lieutenants. At Wall Street, many analysts said that:

- Tyco’s former CEO will be remembered as being at the top of a great corporate malfeasance by the company’s own management, and
- Tyco itself will go down in business history books as a company that was not run on management principles, as companies are supposed to be.

Even as Tyco International ballooned to a $36 billion giant with 240,000 employees, Dennis Kozlowski allowed only a relative handful of trusted lieutenants to work with him at Tyco’s headquarters, keeping out any prying eyes. This is precisely the environment where management risk multiplies. In September 2002, Tyco’s new management said Kozlowski arranged the payment of $96 million in bonuses to 51 employees so that they would pay off:

- Loans from the company, and
- Tax liability resulting from the forgiveness of those loans.

There were strings attached to this outrageous gift. All 51 beneficiaries were asked to sign an agreement that they would forfeit the money if they told anyone other than their lawyers and accountants about it. Kozlowski also concluded a secret agreement with Mark Belnick, which tied Belnick’s remuneration to Kozlowski’s, thereby giving the corporate lawyer an undisclosed incentive to aid and facilitate the CEO’s improper diversion of company funds.\(^\text{11}\)

Operational risk at Tyco did not end there. As it was eventually revealed, not one or two but many of Tyco’s supposedly independent directors had direct financial dealings with the company and the board altogether lacked vigilance. For instance, one director, Joshua M. Berman, was receiving $360,000 annually for ‘legal services’, according to SEC filings. That is small fry compared with the $20 million fee Kozlowski paid to ‘lead director’ Frank E. Walsh, Jr for his services in helping to arrange Tyco’s disastrous 2001 acquisition of commercial finance company CIT.\(^\text{12}\)

But greed tends to retreat when the money-grabbing becomes public. Tyco’s board finally forced Dennis Kozlowski to resign as chairman and chief executive, shortly
before he was charged with tax evasion and related offences by New York authorities in connection with his purchase of valuable Impressionist paintings. Many more secrets became known by way of Kozlowski’s indictment on tax evasion charges, and the events which followed it. The equity’s rout gave Wall Street’s short-sellers their day of glory.

4.8 Conflicts of interest: from IPOs to disappearing technology firms

Nobody would really question that the low business ethics of the late 1990s led to the débâcles of 2000–2002. Enron, Tyco International, ImClone Systems, Kmart, Adelphia Communications, Global Crossing, WorldCom are but a few examples of what has been going on behind the backs of unsuspecting investors who were being taken to the cleaners. The background to all this is lust and greed – but also conflict of interest, which is an operational risk.

In the mid-1990s to 2001 timeframe a major conflict of interest among investment banks was connected to initial public offerings (IPOs) and the unwarranted hanging of strong buy signs on their analyses and stock ratings (see section 4.6). Brokers were using their investment analysts to promote investment banking business. In early 2002, Crédit Suisse First Boston (CSFB) paid $100 million to settle charges that it gave certain hedge funds IPO shares in exchange for inflated commissions on other stock trades. CSFB also faced possible criminal charges on other IPO-related abuses.

In May 2002, Merrill Lynch also paid $100 million to settle charges by New York State Attorney General Eliot Spitzer that it traded favorable ratings on Internet stocks to bolster its investment banking activities. Eliot Spitzer, who called such actions a shocking betrayal of trust by one of Wall Street’s most trusted names, has also been investigating Citigroup’s Salomon Smith Barney for both IPO abuses and tainted research.

The National Association of Securities Dealers (NASD), too, has been investigating Salomon Smith Barney, charging it with issuing materially misleading reports on the telecommunications company Winstar. Salomon agreed to pay a trivial $5 million fine as Winstar, the company it promoted, collapsed. ‘What occurred in this case was a serious breach of trust between Salomon and its investors,’ said Mary Schapiro, NASD’s head of regulatory policy. Indeed there has been a serious breach of trust, but who is to right the balances?

Initial public offering was not the only game in town that defrauded investors. Some of the brokers recommended to their clients as buys companies that simply faded away from the radar screen – in the same mysterious manner they had come alive a few years earlier. Toronto- and Hong Kong-based Semi-Tech Group went public in 1993, and collapsed in 1999, wiping out the nest egg of thousands of investors, and leaving behind a huge trail of debt. The crash of its equity is dramatized in Figure 5.

A holding company, the Semi-Tech Group specialized in the rescue of fallen angels: well-known but tarnished brand names such as America’s Singer Sewing Machine, and Japan’s Sansui Electric, a manufacturer of consumer electronics. Theoretically at least, Semi-Tech employed 100 000 workers in a global setting said to include 120 countries (!). Also theoretically, it racked up almost $5 billion in sales. By the mid-1990s, the
‘Group’ boasted listings in stock markets around the world, including New York, Tokyo, Frankfurt, Hong Kong, and Bombay.

Post mortem, even critics admit that James Ting, Semi-Tech’s founder, was successful at rebuilding companies that were not in great shape when he acquired them. But what has happened subsequently to these companies and to the equity they represented is anybody’s guess.

Some people say Ting took the money and ran. Others are of the opinion he overplayed his hand leading to a chain of failures. No matter what the basic reason might have been, Ting’s global web of businesses unravelled, culminating in the largest corporate collapse in Hong Kong history. AKAI Holdings, Ting’s main Hong Kong subsidiary, fell apart after recording a $1.75 billion loss in 1999. By early 2000, most of the companies controlled by his holding:

- Had stopped doing business
- Slid into bankruptcy, or
- Were absorbed by other firms at bargain basement prices.

Whatever happened, investors lost big sums. The crash left lenders and bondholders with unpaid debts estimated at $2 billion. In Hong Kong alone, HSBC tried to recover some $200 million, potentially its largest loan loss in more than 135 years of operating in the former British colony. On the surface, this is credit risk, but as a careful examination reveals, at the bottom line it has many operational risk characteristics – and above all management risk.

Notes

13. EIR, 4 October 2002.
5 Information technology risk

5.1 Introduction

A sophisticated information technology (IT) system can be instrumental in controlling some types of operational risk. At the same time, however, IT creates new operational risks, all the way from bookkeeping and payments to systems reliability and model risk. Low technology makes matters worse. This chapter explains why, and it suggests ways to bend the curve of IT-related operational risks.

For starters, information technology is pervasive. In the G-10 countries and many others, it can be found in any activity undertaken by modern enterprises. All automated processes are exposed to technology risk. Therefore, to study the operational risks associated to IT, we must first identify and make an inventory of what we have in:

- Computer applications
- Databased information
- Basic software endowment(s)
- Physical network(s), and so on.

This concerns not only software and hardware but also the processes running on the computers.

This being done, we must focus on risks such as:

- Threats to information
- Vulnerability in architecture
- Vulnerability in applications
- Vulnerability in security.

Not everything is quantifiable. As José Sanchez-Crespo, of A.M. Best, suggested to me: ‘You cannot quantify all information technology risks. Some of them are more qualitative than quantitative.’ System reliability is quantitative (see section 5.6); analysis and programming have both quantitative and qualitative aspects – and the same is true of model risk.

Some models are complex. But even if they are simple, how can we value somebody’s incompetence in using the model? This question is vital because banks tend to rely on models for transaction control and can end up in a loop of uncontrollable actions.

One of the problems is that we do not have enough data to model IT risk. If we wish to get results in controlling exposure connected to IT, then the search for technology-related operational risk must be specific. An example is the role of
computers, communications, and sophisticated software in risk management, and the deliverables which we get.

The good news is that knowledge and experience can be instrumental in controlling information technology risk – from overall system perspective all the way to implementation details. What did we learn from 45 years of computer applications, databases, and communications experience in banking? The A,B,C can be phrased in these terms:

- **A** The able usage of information systems is a matter of *culture* – not of machines.
- **B** We get little from our investment unless we have *clear goals*, and effectively use technology to reach them.
- **C** Without challenging the ‘obvious’, results will be minimal while op risks will run high.

This emphasizes the importance of getting out of old structures that limit our ability to obtain results, and cost too much for the service they provide. The computer as we have known it for nearly five decades is dead. The new master of the technological domain is *system solutions*, which require both insight and foresight. We must use our experience in a productive and pragmatic way. The know-how we acquire should be applied to the job, it should not be left as a theory.

5.2 Technology risk defined

In an advanced industrial society, a company’s operations are highly dependent on the integrity of its technology systems. Its success depends, in great part, on its ability to mine increasingly rich databases and make timely decisions in anticipation of client demands and industry changes. A company needs rich databases to be in control of risks assumed in the environment in which it operates.

A company’s business is negatively impacted if it experiences system interruptions, errors or downtime; and also if it falls behind its competitors in the information technology which it uses – and the way in which it is using it. Therefore, every company must be committed to an ongoing process of upgrading, enhancing, and testing its technology, to effectively meet:

- Sophisticated client requirements
- Market and regulatory changes, and
- Evolving internal needs for information and knowledge management.

Technology risk includes the failure to respond to these prerequisites, as well as many other issues such as: human error; internal fraud through software manipulation; external fraud by intruders; obsolescence in applications and machines; reliability issues, mismanagement; and the effect of natural disasters. Technology risk is manageable, but it takes a significant amount of *will* and *skill* to do it.

Of all the operational risks connected to IT, which were briefly outlined in the preceding paragraphs, mismanagement may well be the most deadly. Not only in the
general case is information technology seriously mismanaged, but there is also a trend
to outsourcing, often improperly considered as relegation of senior management’s
responsibility for IT to a third party.\(^1\)

Over the years, available computer power has tremendously increased; this
however cannot be said of the sophistication of applications and of systems solutions.
Figure 5.1 emphasizes this bifurcation between spending money on information
technology and getting tangible benefits out of it. The difference is made by
management, both at corporate level and of IT operations themselves.

- Companies benefit from advanced, highly competitive computer applications.
- The laggards pay the costs, but get meager results because they mainly think of the
 past, not of the future.

Today, continuing to program in Cobol is not just an operational risk, it is a criminal
offence. What is surprising is that by ‘tradition’ rather than by choice, the majority of
companies continue being criminal offenders.

A similar statement is valid about the continuing use of mainframes, which cost an
inordinate amount of money for the trivial computer power they deliver. Client-
servers, disk farms, and supercomputers are the answer. In the early 1990s
supercomputer performance has been typically characterized by millions of floating-
point operations per second (megaflops). Today, there are more than 50 super-
computers on the Top 500 list delivering peak performance over a trillion floating-
point operations per second (teraflops). This capacity has enabled their users to:

- Generate complex simulations, and
- Operate on high resolution grids.

High technology permits visualization (turning numbers into graphs and images),
visibilization and visistraction (see section 5.4). These are powerful tools but few
companies know how to use them. Any institution, or any other firm, which fails to

![Figure 5.1 Available computing power and advanced vs laggard IT applications](image-url)
capitalizing on the best that technology can offer purposely exposes itself to operational risk.

Figure 5.1 and the preceding paragraphs drew attention to the fact that while practically all companies spend large amounts of money on computers, communications, and software only the leaders really benefit from their investments. Spending big sums of money on technology without the corresponding return of investment (ROI) is an IT-related operational risk. Take the financial industry as an example.

As an enabling technology, electronic banking significantly increases the complexity of business operations, which is being further intensified by the ongoing process of concentration in the banking industry. But while mergers are frequently seen as a means for cost savings, ROI is rarely a clear goal when approving IT expenditures (more on this later).

I classify routine in information technology operations, the so-called legacy systems, as a major IT-related operational risk. It is one of the important reasons why banks do not get their money’s worth out of IT investments. There is also, however, plenty of other IT-related operational risk. The evidence collected in my research in 2002 among leading financial institutions indicates that banks consider IT as their second (or, sometimes, third) most important and most consistent operational risk. In the majority of cases, the approaches they take to control it are heterogeneous, lacking both:

- A common ground, and
- An enterprise-wide system view.

One of the major flaws is the continuing use of legacy applications as their basic frame of reference. This not only limits the implementation perspective but it also keeps the bank in a backwater. An example based on 12 crucial applications within one financial institution is shown in Table 5.1. It distinguishes between:

<table>
<thead>
<tr>
<th></th>
<th>Currently is</th>
<th>Should be</th>
</tr>
</thead>
<tbody>
<tr>
<td>Currency risk</td>
<td>Partially RT</td>
<td>RS</td>
</tr>
<tr>
<td>Global market risk</td>
<td>Batch</td>
<td>RS</td>
</tr>
<tr>
<td>Interest rate risk</td>
<td>Partially RT</td>
<td>RS</td>
</tr>
<tr>
<td>Exchange rate risk</td>
<td>Partially RT</td>
<td>RS</td>
</tr>
<tr>
<td>Credit risk</td>
<td>Batch</td>
<td>RT</td>
</tr>
<tr>
<td>Investment risk</td>
<td>Batch</td>
<td>RT</td>
</tr>
<tr>
<td>Event risk</td>
<td>No IT support</td>
<td>RT</td>
</tr>
<tr>
<td>Position risk</td>
<td>Batch</td>
<td>RS</td>
</tr>
<tr>
<td>Sales conditions risk</td>
<td>Limits Only</td>
<td>RS</td>
</tr>
<tr>
<td>Funds transfer risk</td>
<td>No IT support</td>
<td>RT</td>
</tr>
<tr>
<td>Settlement risk</td>
<td>Batch</td>
<td>RS</td>
</tr>
<tr>
<td>Transaction processing risk</td>
<td>No IT support</td>
<td>RT</td>
</tr>
</tbody>
</table>

RT, real-time; RS, realspace.

Table 5.1 The missing technology for controlling risk at most financial institutions

- **Batch**, which was a solution of the 1950s, and today is an obscenity.
- **Real-time** with data capture at point of origin and instantaneous on-line information delivery at point of destination.
- **Realspace**, which is real-time on a global setting, collapsing operations which may be in five continents into real-time interactive reporting.

It can be easily seen that the information technology solution followed by this institution is substandard. It is way behind state of the art, and it is full of operational risks related to the use of obsolete concepts. Event risk, funds transfer risk, and transaction processing risk are not even supported by IT. Global market risk, credit risk, investment risk, position risk, and settlement risk are handled overnight in batch. By the time senior management gets the information, the bank may well have gone under.

Yet, this financial institution – like so many others among its competitors – spends an inordinate amount of money on IT. A big chunk of its technology risk is that its top management, and its IT specialists, fail to appreciate there is a world of difference between legacy approaches and new, competitive solutions which are able to respond to twenty-first century requirements. In terms of sophistication, the pattern shown in Figure 5.2 differs by an order of magnitude.

Figure 5.2 Axes of reference of the changing information technology environment and its systems perspective
At the top of the list of operational risks which I have found in connection to IT solutions, I distinguish:

- Risk of falling behind in IT
- Project management risk
- Quality and sophistication of software risk
- Risk of slow applications development
- Vendor failure risk, and
- Risk related to third party outsourcing.

Vendors can fail, but few companies have paid enough attention to protecting themselves against this eventuality. The usual approach is to put all of one’s eggs in the same basket, quite often that of the bigger vendors. This is a very limited vision and it is wrong because big vendors, too, can fail. Look at Digital Equipment Corp. (We will return to this issue.)

5.3 The growing role of IT and its risks

In today’s global markets, enterprises succeed or fail based on the speed with which they can respond to changing market conditions. Properly chosen and correctly used, information technology is a vital ingredient of rapid response. The fast development of sophisticated software is the cornerstone to competitiveness; therefore business solutions need to be put in place faster than ever before. Contrary to rules prevailing during the Palaeolithic age of computing (1960s and 1970s):

- In many cases it is no longer practical to build new business applications from the ground up.
- Nor is it always viable to deploy a package solution, as packages do not keep up with new, specific company needs.

Where business competitiveness is at stake, the answer is rapid prototyping and a fast track to implementation. Assembling a business application from software components is like using ready-made parts to build a car or house. The fast track offers a competitive solution to the dual problem of:

- Speed of response, and
- Flexibility in adaptation and upkeep.

At the same time, however, IT costs must be contained. Rapid software development is a good way to do so, because a huge component in the IT budget is personnel costs. Another vital ingredient in cost control is the avoidance of duplication of effort in regard to data capture, through a policy of one entry, many uses.

In classical ‘electronic data processing’ (EDP), the same information element is entered up to seven times. The average number of re-entries used to be 3.5. Now the average is 2.8. This is still too high, let alone the error in transcription which comes
into the IT system through multiple entries made in incompatible formats and addressing heterogeneous files – usually corresponding to discrete islands of application.

No wonder that data entry costs and subsequent clearance of embedded errors have been consuming 20–25% of the IT budget in many companies. The best policy is one entry, many uses, but its implementation demands a deal of organization and self-discipline. Both are lacking from the majority of IT operations in the banking industry, with the result that operational risks are ballooning.

Another crucial policy in restructuring information technology operations, one that will have significant impact on operational risk control, is the emphasis that should be placed on system analysis for advanced applications. To appreciate that statement it is wise to underline the fact that, contrary to what is generally believed, the main objective of computing is not reduction in paperwork and clerical operations, but:

- Foresight
- Insight
- Analysis, and
- Design.

It is not the automation of classical data processing chores or of numerical calculations. High-technology data-handling should eliminate the low technology of the past. As Figure 5.3 suggests, there is a great need to increase the depth and breadth of analysis. This is perfectly achievable, but it requires appropriate board decisions and CEO guidance. The change from an environment characterized by the top half of Figure 5.3 to that in the bottom half will not come on its own.

Still another needed policy in information technology restructuring, indeed in changing the whole culture of IT, is the emphasis to be placed on return on investment (to which reference was made in section 5.2). Bankers Trust (BT) and the Mellon Bank, among others, have been examples of institutions that had a firm 22% rule on information technology ROI.

As a goal, high return on investment is reachable, but the decision to achieve it must be made by the board and the CEO – and it should be steadily controlled. Apart from the ROI side of the equation, which is very important, there is no better way to let loose IT-related operational risks than poor cost control.

- Large budgets have the nasty habit of breeding op risk.
- Tight budgets convey a sense of discipline, therefore they make everybody attentive.

IT expenses must be focused. Take risk management as an example. At Bankers Trust, information technology absorbed about 25% of the non-interest budget: $600 million per year out of $2.5 billion. Ten percent of all IT expenses went for risk management. If the restructuring of the bank’s computers and communications systems to support risk control was included, the figure would be much higher.

Out of the IT risk management budget at Bankers Trust have come beautiful applications such as the risk adjusted return on capital (RAROC) and the Magellan corporate memory facility (CMF). But money alone was far from being the whole
Figure 5.3 The need to increase the depth and breadth of analysis without increasing costs is served by high technology

story in the BT solutions. Global risk management required effectively integrated systems and procedures implemented at:

- Front desk
- Middle office
- Back office, and
- Enterprise-wide.

Within this enterprise-wide perspective, a system must be put in place for operational risk identification and for timely reporting on operational risk events. Several banks included in my research expressed the opinion that operational risks
must be integrated into a homogeneous reporting format. A business unit by business unit reporting scheme by Barclays Bank, which is more qualitative than quantitative, is shown in Table 5.2.

A king-size operational risk associated to IT is the maintenance of obsolete applications software. Practically all financial institutions have in their library applications which are 20–30 years old. These have to be maintained:

- The maintenance of applications programs is labor-intensive and it is a highly ineffective job.
- Many banks are using up to 75% of their programming resources to maintain old programs, which is absurd.

Because the maintenance job is greatly mismanaged by the same IT people who should know better, I classify it near the top of IT-related operational risk. I know banks that use young IT graduates to maintain applications programs that were written before they were born.

Table 5.2 Example of a macroscopic reporting structure for operational risk adopted by Barclays Bank

<table>
<thead>
<tr>
<th>Business unit</th>
<th>Internal control</th>
<th>Op risk exposure</th>
<th>IT service</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product X</td>
<td>Excellent</td>
<td>High</td>
<td>Very good</td>
</tr>
<tr>
<td>Product Y</td>
<td>Poor</td>
<td>Average</td>
<td>Average</td>
</tr>
<tr>
<td>Product Z</td>
<td>Excellent</td>
<td>Average</td>
<td>Not material</td>
</tr>
</tbody>
</table>

5.4 Advanced IT solutions and smart environments

Several hypotheses have been advanced about what the business world will be like with smart environment technology, but none can be proved until the smart environment comes of age. A similar statement is valid about guessing what the ‘killer’ information technology applications will be. One has to build them and try them out. The same is true about the operational risks associated with new and old system solutions.

But the very fact that hypotheses (tentative statements) are made about the future is a good sign. Historically, information technology departments did not work that way. They did not make hypotheses, let alone validate them; neither did they pay attention to killer applications. What they have been mostly interested in is a shot-by-shot writing (not even program design) with plenty of heterogeneity in the system.

Enterprise management software helps to break that vicious cycle of short-termism. The first step in developing an information technology system able to support managers and professionals in an able manner, through interactive computational
finance, is the development of the appropriate architecture. Figure 5.4 provides an example based on a project I carried out in the financial industry.

An enterprise architecture should have vision, be flexible, provide for system integration, employ prototyping, and use the latest technology. The latter includes agents (knowledge artefacts) and sophisticated decision support solutions. To enable our bank to be ahead of the curve, the architecture that we choose must definitely allow for adaptation to changing:

- Market conditions
- Customer requirements
- Products and services, and
- Corporate objectives.

The enterprise architecture should contribute to the control of other operational risks (see section 5.7), rather than adding to them. Because technology moves fast,
customer needs change, and new operational risks come to the fore; therefore the technological infrastructure should be up for frequent review. The same is true about managing the distribution and configuration of software across the network. For this reason, IT departments should always keep a balance between:

- Innovation
- Speed of execution
- Reliability, and
- Overall control.

Sometimes the goals are conflicting. For instance, decentralizing IT responsibilities contributes to cost awareness and network performance, but makes it more difficult to enforce configuration standards and maintain control. By contrast, placing all application files in a few central locations gives IT better central control, but also leads to reduced flexibility and network reliability, which may end in user dissatisfaction with information services being provided.

System performance, reliability, cost and user-perceived quality of service are challenges which, to a significant extent, date back to the 1960s, even if they are still with us. What is new is the emphasis now placed on IT-oriented operational risk. The persistence of old problems and adding of new challenges in the IT landscape has three unwanted effects:

- It diverts attention from new, advanced applications.
- It invariably leads to end-user dissatisfaction with IT services.
- It contributes in a significant way in increasing information technology costs.

As we saw earlier in this chapter (section 5.2), cost/benefit optimization is a ‘must’ because the way to bet is that network-attached devices have a high cost of ownership. Some companies have estimated the cost to be $10,000 per desktop per year – a figure that mainly covers on-line support and maintenance, not installation or actually buying the unit. Neither is the tracking of IT-related operational risks included in this figure.

With such high cost, the returns obtained per workstation in terms of personal productivity, and decision support, deserve particular attention. Short of high returns in terms of deliverables, ROI will be dismal. Only advanced applications, including interactive datamining, graphics presentation, and agent-supported services, can provide high enough benefits to justify the cost.

Effective on-line searches and reporting solutions for managers and professionals have prerequisites. They require the use of filters so that specifics are reported in a way that is answering each end-user’s requirements in a personalized manner. Computer response must be action-oriented. Based on an ongoing application in the financial industry, Figure 5.5 gives an example of visualization services (turning numbers into graphs and images) available through interactive computational finance.

Advanced applications are sensitive to reliability and uptime (see the next section). Reliability criteria and cost-effectiveness mediate against centralized solutions. A most vexing problem with centralization of network resources is the potential for
bottlenecks and downtime. Local area networks like IBM’s Token Ring and 10MB Ethernet do not deliver acceptable response time when 100 or more clients simultaneously work on-line. Therefore, they are leading to IT operational risks.

Inability to support 99.99% reliability and deliver an acceptable low level response time is a recurrent operational risk, so much so that it looks permanent to the end-user. Besides significantly improving performance on these two fronts, high reliability and low response time, users demand a mechanism for easy development and distribution of applications programs, as well as a prototyping language which speaks their jargon.

The availability of flexible and comprehensible graphical users interfaces, and the existence of visual programming languages some of which are job-specific, helps in answering such requests. The more sophisticated end-users, however, go beyond simple visualization through graphics. They want to have available on-line:

- Market data filtering, parametrically set to their specific needs
- Visibilization facilities, permitting them to perceive and appreciate in real-time the very small and the very large
- Visistraction capabilities, which enable the comprehension of phenomena without direct physical interpretation as well as concepts.

All three points describe advanced applications. The nature of what is ‘advanced’ and what is not evidently changes with time. In the mid-to-late 1980s and early 1990s advanced IT applications were expert systems. Today they are not, in the sense that banks, manufacturing, and merchandising companies that don’t use expert systems as a matter of course are living in medieval times in terms of information technology.
Being in an IT backwater is a major operational risk, but few boards and CEOs are aware of this fact. The problem is that plenty of people in senior management are still computer-illiterate, though this is changing with the new generation of executives taking over. Because it keeps the company behind the curve of competition, computer illiteracy is an operational risk.

Both the IT applications and the infrastructure must be ahead of the curve. To serve its users in an able manner, the infrastructure itself should be smart, able to check if it is missing components and automatically reinstall those out of action. Also, it should be providing an automatic method of correcting software problems after they occur, and facilitate the installation of new software or changes to the configuration (as the system evolves) without interruptions, reloads, and restarts.

All these are prerequisites to advanced applications, because no IT implementation can be even remotely considered ‘advanced’ if what has just been outlined in a systems sense does not perform to the highest standard. Killer applications will themselves be killed by the substandard centralized infrastructure which characterizes so many IT operations, and operational risks will abound unless they are properly identified, classified, monitored, and corrected, as outlined in Chapter 2.

5.5 Business continuity and IT-related operational risk

Given a modern entity’s dependency on technology, a major operational risk is that of hardware, software, and telecommunications breakdown. A prolonged timeout can be catastrophic. Protection from unexpected events as well as back-up and recovery are ‘musts’. Policies and standards related to avoiding, mitigating, and recovering from unexpected and sudden loss of computing and communication resources must be established by every institution in a factual and documented manner.

The tragic events of 11 September 2001 have demonstrated the importance of assuring business continuity when major adversity hits. The better managed companies see to it that executives, at any time, in any place, are each responsible for preparing and upkeeping business continuity plans for their unit, as well as for following up on such plans. The goal is typically to:

- Minimize business disruption
- Evaluate in advance likely financial loss
- Protect the firm from regulatory and legal exposure, and
- Maintain a public image of world-class service provider, able to operate under most adverse conditions.

Business continuity has been discussed earlier in this book from an entrepreneurial viewpoint. This section adds to it IT-related concerns. For business continuity purposes every credit institution must assume that even under a worst-case scenario it will:

- Maintain official and corporate customer records
- Create, transmit, and process financial transactions
- Provide direct electronic service to customers, and
- Sustain compliance with regulatory and legal reporting.
Regardless of IT platform, for operational continuity reasons critical applications routines and data must be restored to the point-of-failure, within the recovery time specified by the criticality of the application. It is wise to always remember that IT is the cornerstone in maintaining business continuity. Standards concerning IT outsourcing, for example, must be configured to continue providing support under disaster conditions.

Fast recovery procedures should see to it that real-time connectivity is maintained at all times, to each business unit and desk. This requires detailed contingency planning. Furthermore, business continuity plans must be continually re-evaluated, and re-tested annually. Such exercises should include structured walkthroughs:

- Evaluating the business continuity plan and updating according to changing business conditions, and
- Testing expected results and examining deliverables through post-mortem, including audits.

Different levels of criticality must be established in connection to information technology and the operational risks connected to it (see also the discussion on HF/LI and LF/HI events in Chapter 8). Applications with real-time recovery from a disaster must be properly identified. This identification is vital, as such applications should be running within five minutes or less of a catastrophic event.

Other applications than those in the top priority class may be one notch less critical. For instance, they should be up and running within 2 hours; still others within 12 hours, or 24 hours. This type of identification and classification of the aftermath of IT-related operational risk should be determined by the company’s exposure to each event, customer service prerequisites, and tangible monetary criteria.

As a matter of principle, business continuity solutions should be cost-effective. Usually, though not always, it is easier to assure business continuity in a structured information environment, than in an unstructured one. Figure 5.6 illustrates this further.

- A structured information environment is served through algorithms and long-established procedures.

Accounting is a prime example; relatively simple transactions are another. For business continuity purposes, accounting database(s) should be duplicated, but with all of them updated on-line. Simple transactions can be more easily reconstructed than complex transactions characterized by a multitude of database accesses.

It is evident that assuring business continuity in an unstructured or semi-structured operations environment costs more than doing so in a structured one. Typically, within a structured information environment operational risks will tend to be high frequency but relatively low impact (HF/LI). (More on this in Chapter 8.) The opposite is true of operational risk in an unstructured information environment.

- Information technology used in unstructured environments is heuristic by nature, and the reporting requirements are realspace (see section 5.2).
The transactions are complex, and the likelihood is that operational risks will be high impact.

The examples presented in the preceding paragraphs document that the control of IT-related operational risk is key to business continuity and represents a critical management challenge. Companies must strive to handle in an able manner their service delivery infrastructure and operational risks, as well as those originating at their business partners. Key points of an op risk control plan include:

- Unifying the weakest links in the technological base.
- Rethinking customer service to upgrade quality and dependability.
- Monitoring the entire network of operations for unwanted events.
- Integrating service assurance to assist in isolating operational risk cases.
Upgrading service quality and IT dependability enhances business continuity and makes it feasible to support more revenue streams. Tier-1 companies have been eager to create a self-healing infrastructure, able to automate corrective action and avoid costly duplication of monitoring work. Knowledge artefacts (agents) can be designed and implemented to enable such a self-healing approach.

Able solutions, however, have prerequisites. One is identification, classification, and standardization of IT-related operational risks (see Chapter 2). Another prerequisite is the clear definition of quantitative and qualitative metrics connected to quality assurance. This makes feasible:

- Evaluating service quality easily, and
- Making documented changes to existing service agreements.

Making efficient provision for operational risk control decreases the time involved in activating new customer services, while it also permits the faster deployment of novel features and innovative products. Because forward-looking provisioning decreases the manpower necessary to run the system, it ultimately cuts down operational costs. Other benefits include:

- Reducing human errors, and
- Improving efficiency by providing an accurate view of the causes of operational risk.

Operational risk incidents have to be databased and datamined after having been identified and classified. Statistical evaluations will eventually permit their division into high frequency and low frequency. Costing of their aftermath, which also must be databased, will enable classification of their impact into high or low.

In conclusion, the op risk control solution to be adopted has to react to a situation that already may be causing operational risk problems to the company and its customers. The technology to be used must respond well in meeting customer needs associated with ongoing services. The move to a concept of self-healing infrastructure, which automatically takes corrective action and improves the cost-effectiveness of an operational risk control solution, requires a significant amount of skill.

5.6 System reliability should always be a major objective

Reliability is not an ability. It is the probability that a given component, subsystem, or system will perform without failure over a pre-established time period, within a defined operational environment, and under other conditions which characterize the operations this component, subsystem, or system is expected to perform. System reliability – or, more precisely, the lack of it – is a major operational risk.

Many people confuse the reliability of a given system component with that of the system as a whole. This is wrong. Other things being equal, the more complex the system the faster its reliability decreases. Figure 5.7 gives a bird's-eye view of the
relationship between system reliability, R, and component reliability, r. The algorithm connecting the two is:

$$R = e^{-t/\bar{T}}$$ \[1\]

where:
- e = the radix of Neperian logarithm
- t = the pre-established operational period
- \bar{T} = Mean time between failures (MTBF)

MTBF is basic metrics in engineering. Another key measurement is mean time to repair (MTTR). With information systems we are also interested in other metrics:

- MTBSI, which stands for mean time between systems interrupts.
- MTOSI, which means mean time of system interrupt.

Reliability may also be defined as the extent to which a system or component performs its specified functions without any failures visible to the user (see also reliability applications feasible in connection to ship insurance, in Chapter 13). In this
broader sense, instead of the reliability equation [1] many computer centers prefer to use the following calculation:

\[R = \frac{\text{System usage time}}{\text{Sum of interruptions}} \]

The total system facilities viewed as an integral source of a given technological capability can be categorized according to the responsibility of the provider of IT services, and according to the job done by the end-user of those facilities. Hardware, software, communications, and operational reasons will all have an impact on systems availability.

Availability is the probability that a system is running at any point during scheduled time. It is calculated as follows:

\[
\text{Percentage availability} = 100 \times \frac{\text{System usage time (uptime)}}{\text{Scheduled time}}
\]

where Uptime = Scheduled time – system downtime

Availability and reliability relate to the system running at any point during scheduled time, and must be examined and ensured within a life cycle perspective. As such, they also define the extent to which the system (all components of hardware, software, and documentation provided by the supplier) may be depended upon to provide complete, correct results when required, given any combination of inputs.

‘Any combination of inputs’ includes the certainty that the system will be up and running, able to evaluate these inputs and handle them in real space. Some inputs, however, may be invalid, not because of system reliability reasons but because the prerequisite organizational study was deficient. Complete and correct results require error detection, correction (or rejection), and publication. In different terms:

- An IT system may be up and running,
- But its deliverables are characterized by ‘garbage-in, garbage-out’.

This, too, is an IT-related operational risk. System reliability should not be confused with system dependability, which is primarily guaranteed through minute organizational work. Taking system dependability out of the operational risk list, calls for timely and accurate work centered on input-processing-output. By contrast, reliability rests on design characteristics incorporated at drafting stage.

Reliability, availability, and business continuity correlate. Operational risk must be examined from the viewpoint of all possible consequences to an entity, should it suffer a disaster that does not allow it to function properly. Notice that total system failure or a wider disruption can be caused by a number of reasons, including power outages – not only computer hardware and software failures.

An example along this line of reference is the train accident in Baltimore, Maryland, which derailed Internet traffic. This accident took place inside a rail tunnel in the week of 16 July 2001, and it did more than snarl city traffic or spread toxic fumes. It also highlighted the vulnerability of the growing web of Internet connections. The
accident severed or melted fibre-optic cables running through the tunnel, affecting electronic commerce, Internet sites, and e-mail along the length of the US East Coast, including Washington, Philadelphia and New York. For more than two days, dramatic slowdowns occurred for many on the East Coast who sought access to the Web. As Internet traffic was re-routed to other cables, computer users encountered sluggish responses in cities as far away as Atlanta. However, companies which had enhanced system reliability through alternate links, were relatively unaffected by the accident.

Experts say that because fiber-optic lines often run along heavily travelled rights-of-way, they are vulnerable to such accidents. Another fiber-optic outage in Oregon, during that same week of 2001, was due to a construction crew digging a trench for a sewer pipe. Workers inadvertently slashed a fiber-optic cable with the result that at least 50,000 subscribers lost phone services.

Some months earlier, in November 2000, millions of Internet users in Australia were affected after Telstra, the country’s biggest Internet service provider, was crippled. The hypothesis has been that a fishing boat or small earthquake might have damaged a cable that handled more than 60% of Telstra’s Internet traffic. The cable lay beneath about 100 feet of water off Singapore.

Also, in March of 2000, Northwest Airlines was hamstrung for three hours when a construction crew cut a fiber-optic cable near its headquarters in Eagan, Minnesota. The accident crippled Northwest’s communications with airports around the United States and the carrier found itself obliged to cancel 120 flights, while delaying hundreds of others.

These examples should be viewed within the pattern described in 2000 in a report from the US General Accounting Office (GAO)\(^5\). The evidence provided in this report focused attention on several factors responsible for delays and outages, mainly regarding:

- Electronic trading systems used in the equity markets, and
- On-line brokerage models where traders employ high-speed Internet links to intermediaries.

Because of this, GAO’s general conclusions are relevant to a number of information environment activities, including foreign exchange and fixed income markets. Most of the intermediaries contacted in connection to the GAO study noted that outages did not result principally from the incapacity of their computers to handle large transaction volumes, but rather from upgrades to:

- Expand capacity, and
- Improve supported capabilities.

The most common reasons for system outages involve problems with vendor-supplied trading system software. This is a good example of lack of coordination in outsourcing (see also section 5.8). Most companies operating on-line rely on vendor support for major parts of order processing. When these third-party systems experience problems, outages hit more than one firm.
5.7 Trading, payments, settlements, and operational risks associated to IT

Most success in tracking and control of IT-based operational risks comes by focusing on functional categories which have different characteristics and availability requirements. In other terms, an IT-related operational risk control program is more effective if it is specialized, with queries addressed within the context of the functional class under scrutiny. For instance:

- What is the cause of trading delays?
- Which are the operational risks associated to them?

According to the study by the US General Accounting Office, to which reference was made in section 5.6, trading delays in the environment that was investigated were primarily caused by heavy Internet traffic, particularly during periods of high market volatility. The GAO analysts found that several problems were attributed to Internet service providers.

Other reasons for delays and failures included hardware problems, procedural switches from manual to automated order processing, different reasons for system stress, problems regarding overnight updating of databases, and breakdowns in telecom equipment. The silver lining was that despite their frequency and (sometimes) length, outages and delays did not seem to have had systemic consequences. The apparent reasons for this are that:

- In most cases there was no coincident big market news to the outages
- These outages have not been too prolonged, so traders were able to delay trades, and
- Other ways to trade were still available, like elder electronic systems and telephones.

GAO noted, however, that when outages and delays were present trade activity was generally lower than on normal trading days. Also, some institutional and retail investors were reluctant to trade without the availability of centrally determined prices. This particularly happens outside regular trading hours when liquidity is low.

It is only reasonable that in order to minimize the chance of trading halts occurring, system providers and users should not only identify the pertinent operational risks but also be most careful in providing for contingency measures and backup procedures. These should be incorporated in every system designed for trading, payments, and settlements. The resulting reliability must be carefully measured. In a comprehensive sense, the provision of payments services includes:

- Clearing of trades
- Payment proper, and
- Delivery of assets (settlement).

Each of these functions carries potentially one or more operational risks. Interbank payment services require the same type of skills credit institutions use in lending:
Figure 5.8 Securities trading, clearing, and settlement share common functions

- Fraud prevention
- Credit analysis, and
- Ability to retrieve funds improperly sent.

Payment services are expensive; indeed, they are the largest cost component in securities trading. Also, their operational risks may involve security breaches, which add significantly to the cost of transactions. Another challenge is payments efficiency, which can be improved through organization, technology, and op risk control.

Trading and settlement are closely related, as shown in Figure 5.8, by the European Central Bank (ECB). In this figure, settlement netting describes the case where net obligations are computed without impact on contractual obligations. Netting by novation describes the netting process which also includes the replacement of original contracts. Settlement netting can be provided not only by central counterparties but also through securities settlement systems, which offer:

- Custody services
- Delivery versus payment, and
- Final delivery of securities from seller to buyer.

The last two points are payments and settlements advances enabled by technology which, however, also engender operational risks. On-line cash payment and settlement services is another challenge. Clearing houses and payment networks are exposed to legal risk and IT risk which should be looked at very carefully.

ECB operates a payments and settlements system, known as Target, which is a welcome addition to the technology of the European Union. Prior to it, the study
which I undertook as consultant to major financial institutions in continental Europe showed that, to a considerable extent, operating risk was the most underestimated risk in the existing payment system made up of heterogeneous components that were not properly tested for built-in reliability. Yet, banking payment systems:

- Are linked on-line to the clearer, and
- They are interdependent in terms of existing operational risks.

A single systems failure, whatever the cause, can spread into other aggregates and it may have a domino effect. Therefore, the able handling of the consequences of security issues, reliability, and outages must be built into national and international settlement systems and procedures. Payment and settlement systems must continue to function regardless of the stress put upon them, even if at reduced capacity.

A modern economy requires on-line settlements, and in recent years progress has been made in the area of wholesale payment systems through the widening introduction of real-time gross settlement. Commercial banks, investment banks, other financial institutions, and the regulators appreciate that continuous linked settlements (CLS) are key to assuring that the clearing and settlement of foreign exchange transactions in the major currencies helps in keeping Herstatt risk under control.

5.8 Operational risk that may result from IT outsourcing and insourcing

Outsourcing is the delegation to another party – the **insourcer** – of the authority for the provision of services. The insourcer is a third party, and there are different types of outsourcer–insourcer relations, which are not the subject of this book.\(^7\) Outsourcing is done under a contract that incorporates service level agreements (SLA; more on this later) including:

- Functionality
- Cost
- Quality, and
- Timeliness of deliverables.

The insourcer accepts the rendering of specific services, under the above four conditions (see in Chapter 4 the case study on EDS, which is one of the major IT insourcers). Companies outsourcing their information technology, or other services, must understand that risks and responsibilities cannot be delegated by the outsourcer to the insourcer. The board and CEO are always responsible for what they have outsourced. Every insourcer is faced with:

- The challenge of getting it right, and
- The cost of getting it wrong.

Taken together, these two points suggest that there are risks associated with outsourcing and insourcing. Outsourcing is not necessarily the best policy for every
entity. The golden rule is: never outsource (or insource) what you don’t understand. Moving away from this principle is synonymous with assuming a horde of operational risks.

Next to understanding what is involved in an outsourcing/insourcing business partnership comes the challenge of working out the clauses of the service level agreement (SLA). This is a 2-way contract which defines deliverables and their functionality, timing, quality, cost, and legal procedures governing the outsourcing/insourcing contract. Legal clauses should focus on:

- The dependability of outsourced services
- Operational risk associated to these services
- The outsourcer’s right to inspect facilities and staff of the insourcer
- Resolution of eventual conflicts of interest between the two parties, and
- Contract termination and exit from the agreement.

An SLA is part of a collaborative level agreement (CLA). Some companies consider the SLA and CLA as being synonymous. This is not a crucial distinction. What is important is that the clauses on SLA and CLA are thoroughly studied and all present or potential operational risks flushed out. Op risk must be properly identified and controlled before the contract is signed.

The question whether outsourcing is a good policy cannot be answered in a factual and documented manner in a general sense. Every case must be studied on its own merits. The principle however is that core functions should not be outsourced. Companies give different reasons for outsourcing services. Some of them are smoke and mirrors, others do make sense. The most frequently heard reasons are:

- Reduce costs (35%)
- Focus on core business (30%)
- Improve functional performance or quality (16%)
- Improve time to market (10%)
- Foster innovation (3%)
- Reduce non-productive assets on balance sheet (2%)
- Conserve capital (1%).

The reader will appreciate that not all these reasons make sense. Costs are not necessarily reduced through outsourcing. The excuse of ‘focus on core business’ is that of the unable who has been asked by the unwilling to do the unnecessary; and so on. This does not exclude however that there may be some good reasons for outsourcing. Only a case-by-case thorough analysis can tell.

Another reason for outsourcing which I was given in my research is a fast-rising one. It is also plainly ridiculous: that of using outsourcing to cut the head count. This is an excuse that proves that people and companies will do many irrational things, even if the background goal is rational. Here is an example from an investment bank which:

- Outsourced its IT to downsize its employment.
- Did so by transferring to the insourcer its own IT personnel.
- But this personnel continued to work on the bank’s premises.
The services provided by its former personnel were billed by the insourcer to the bank at a higher rate, with the result that the overall expense instead of being downsized went up. This was not seen to be important. What was important was that the company could report that it had reduced its workforce, because the board had decided that the head count haircut had to be near to the scalp.

In the above discussion on research findings, singularly absent as a reason for outsourcing is: to serve the company’s strategic plan and its objectives. Yet, this should have been the No. 1 in the list – albeit a difficult one to meet. Well-managed companies should:

- Tie the outsourcing strategy to their business strategy
- Have a policy of knowing exceedingly well what they outsource, and
- Analyse the operational and other risks associated to outsourcing.

Regulators have not been particularly happy with the practice of IT outsourcing, because while it may diminish some operational risks, it brings other op risks into the picture. Here are three guidelines by the Federal Deposit Insurance Corporation (FDIC) on choosing a software/service bureau outsourcer for banks.

- Information technology is core business in banking.
- Otherwise the Federal Reserve, FDIC, Office of the Controller of the Currency (OCC), and Officer of Thrift Supervision (OTS) would not have examined 350 software/service bureau providers in the United States in connection to Y2K (see Chapter 3).
- Failure in outsourcing can be as fatal to a financial institution as failure of its own IT resources.

For this reason, in the US, the regulators rounded up, and phased out of banking, a weak service bureau with plenty of operational risks. In fact, many experts suggest that because IT outsourcing expands, the action of regulators needs to extend beyond banking to the insourcers, for all mission critical systems.

- The board, CEO, and senior management have personal accountability for all outsourced service.

Outsourcing is no relegation of responsibility. Banking and information technology are indivisible. As Walter Wriston, the former chairman of Citibank used to say: ‘Banking is information in motion’, and ‘information about money is as important as money itself.’ Technology is a financial institution’s infrastructure, and no bank can function with defective IT whether this is provided in-house or it is outsourced.

Notes

7 D.N. Chorafas, *Outsourcing, Insourcing and IT for Enterprise Management*.
Part 2

Capital requirements for operational risk and Basel II solutions
6 Allocation of capital to operational risk according to Basel II

6.1 Introduction

The new capital adequacy framework (Basel II) requires capital reserves for operational risk. These can be computed through different methods advanced by the Basel Committee on Banking Supervision, which are presented in this and the following three chapters. Capital requirements for operational risk add to the other capital requirements computable by the credit institution in connection to credit risk and market risk exposures.

Algorithms alone are only part of the computational challenge. As the reader will recall from Part 1, a bigger hurdle is op risk data – and above all management policy and methodology. To assure better results, bankers should appreciate the sense of regulatory capital, that of economic capital, and the differences that exist between the two.

The objective of the present chapter is to convey this message. Basel I of 1988 was a capital accord that focused on credit risk in an age of globalization. Its great merit is that it provided a level ground for the global banking industry, followed in 1996 by the market risk amendment. Basel II is a much broader accord, having three pillars.

- Pillar 1 is capital requirements.

One of the options the Basel Committee offers to banks is the standard method of Basel I. The better alternative is an internal ratings-based (IRB) method which would eventually become widespread and could lead to self-discipline in the capital reserves ratio.

- Pillar 2 is regulatory validation and supervision.

Through Basel II, the role of supervisory authorities is strengthened. The real question is: In validating a particular capital allocation model do regulators let bank management off the hook in terms of errors in capital reserves? It is too early to respond to this question.

- Pillar 3 is market discipline.

The keyword is transparency, which is key to proper functioning of free economy markets. But there are also questions to which only time, and practice, can respond.
For instance: Is closer alignment of regulatory capital with economic capital good public policy (see section 6.2).

Because it represents loss resulting from inadequate or failed internal processes (including people and systems), and from external events, operational risk is present in all three of the pillars. Capital requirements for operational risk are on a firmer basis for those internal and external events that are quantifiable and amenable to computation of risk charges. Others are only qualifiable, and in this case the role of economic capital, which goes beyond regulatory capital, becomes supreme.

Account should also be taken of extreme value events. On 1 November 2002, the equity of one of the main British insurers dropped nearly 10% because of a rumor that it had a large liability in an asbestos case (see Chapter 12). With extreme events and qualifiable operational risks, a key role can be played by Pillar 2 and, most particularly, Pillar 3.

The best way to start this chapter is by going back to the fundamentals. Regulatory capital and economic capital have become keywords in banking; but while the notion of regulatory capital is fairly clear, that of economic capital is still in flux. What else does economic capital represent except guiding management’s hand not to spread the company’s resources too thin?

6.2 Regulatory capital vs economic capital

There is no problem in defining *regulatory capital*. The current 8% capital reserve for commercial banks, stipulated by the 1988 Capital Accord by the Basel Committee, is the best example. Banks adopting the IRB method will no longer follow the 8% rule. Regulatory capital will be computed through models, and it may end up being less or more than 8%. But the regulators have set no rules for *economic capital*. Defining it is the object of this section, leaving aside the rather foggy notion of entrepreneurial capital. Our focus will be the total economic equity, shown in a nutshell in Figure 6.1. It includes:

- Regulatory capital
- On-balance sheet assets and liabilities, and
- Off-balance sheet assets and liabilities.

Eliminating the notion of entrepreneurial capital has been a deliberate choice. In the late 1990s, economic capital and entrepreneurial capital were coexisting, but they were not clearly defined. Often, what one bank told me constituted economic capital the next bank would say: ‘This is entrepreneurial capital’ – and vice versa. Hence the decision to concentrate on economic capital and regulatory capital. Within this perspective, three concepts dominate the comparison of the one to the other:

- Regulatory capital is the *minimum* amount needed to have a license. It corresponds to *expected* risks.
- Economic capital is the amount necessary to be in and stay in business. For instance, providing a cushion at the 99% level of significance.
- Additional capital, beyond economic, is also necessary for extreme events and in order to gain market confidence.
Economic capital, and that beyond the economic capital notion, essentially correspond to unexpected risks (more on this in section 6.3). Since 1988 regulatory capital is composed of two parts, the so-called tier 1 (T1) and tier 2 (T2). To appreciate the difference between T1 and T2 the reader must understand the philosophy behind them, and the criteria used to distinguish between them. These criteria are three:

- **Performance**

 Share capital is permanent; subordinated debt is not. Share capital is tier 1.

- **Possibility to stop payment**

 Dividends can be stopped; short of bankruptcy, interest to bonds and loans cannot.

- **Possibility of write-offs**

 We can write down equity without being sued in court. But we cannot write down debt without a court decision – or filing for protection from creditors under Chapter 11, or some other law protecting from creditors.

Tier 1 and tier 2 capital have been defined in connection to the 1988 Capital Accord. They have been, to a large extent, a compromise between the central bankers of G-10. It may not be appreciated as such, but a major challenge with tier 1 and tier 2 capital is pricing the bank’s assets. The solution that our bank chooses must be within directives set by regulators. There are two alternatives:
Marking-to-market, and
Book value, the accruals method.

Using both approaches indiscriminately can lead to trouble. The results of the two methods, however, can be compared for benchmarking. If capitalisation is, say, $30 billion, and book value stands at $50 billion, then the regulators will ask for an explanation of the reasons for the difference.

There is an exception to the statement made in the preceding paragraph, and it has to do with the valuation of derivative financial instruments in the bank’s trading book. While the majority of derivatives tend to be short- to medium-term, some are long-term. Interest rate swaps may go up to 30 years, which is not rational, but that’s life.

Some regulators permit valuation of derivative instruments kept to maturity through accruals, while those for trading purposes are marked to market. The difference is made by management intent. This is, for instance, specified by the Statement of Financial Accounting Standards (SFAS) 133, in US banking. Let me repeat this statement. Provided the executive board clearly defines its intent to the regulators,

- If derivatives assets are for trading, then mark to market
- If for long-term holdings, then use accruals method.

Recently the notion of tier 3 (T3) capital has come up. It derives from trading profits and other chapters, and it may be part of the additional capital we will be talking about. While the notion of T3 capital may seem appealing, it is appropriate to account for the fact that with derivative instruments what at this moment is trading profits, in a few hours’ time may turn into trading losses.

So much for regulatory capital for the commercial banks. Regulators of other financial industries do not necessarily use the same criteria in defining capital requirements. According to José Sanchez-Crespo of A.M. Best, the insurance companies’ independent rating agency, regulatory capital for an insurance firm is:

- The minimum solvency margin, and
- What an insurer needs to get a license and operate.

By contrast, economic capital is all the capital available to face the insurance company’s liabilities. It includes shareholder funds, discounting of reserves to their economic value, and all the capital that can be utilized to pay policy holders. The latter incorporates part of the debt when the length of borrowing is 20 years – and it is known as ‘hybrid’ capital. (More on insurance companies in Part 3).

6.3 Economic capital and levels of confidence

What was presented in the previous section represents a good enough expression of notions underpinning regulatory capital. The question, however, remains: How are reserve banks looking at economic capital? ‘Ideally, the level of economic capital
should be the same as the level of own funds,’ said a senior executive of the Austrian National Bank. Own funds consist of:

- Paid-up capital (share capital)
- Disclosed reserves (open reserves)
- Funds for general banking risks (provisions with reserve character)
- Hidden reserves (where the law allows them)
- Supplementary capital
- Subordinated capital
- Revaluation reserves, and
- Short-term subordinated capital.

Accepting this statement as a valid frame of reference, which it is, a challenge is the computation of the holding period of return. This is a management requirement, not a regulatory issue. No exact method is set for calculation of this holding period but experts think a daily profit and loss (P&L) statement computed in parallel to the daily value at risk (VAR) can be instrumental in providing the necessary metrics.

Clearly enough, the computation of daily P&L poses challenges; requiring both a first class management information system (MIS) able to provide in real-time such detail, and state of the art technology (see Chapter 5). These are prerequisites. Few banks have this capability at the present time. Those who do, call it a virtual P&L and virtual balance sheet. Both require intraday:

- Evaluation of assets and liabilities
- Identification of risks and their weights, and
- Effective resource allocation on an enterprise-wide basis.

Well-managed banks know how to meet these challenges. They also appreciate that once they do so, they are well on their way to classifying their capital requirements according to risk levels. Figure 6.2 provides a snapshot. It can be seen that regulatory

![Figure 6.2 Classification of a bank’s capital requirements according to risk](image-url)
capital covers expected risks associated with day-to-day operations, while economic capital includes regulatory capital and capital associated to unexpected risks – up to a point. That point is the 99% level of confidence.

This means that 1% of events that might happen in the future are not necessarily covered by economic capital, the way most financial institutions define their economic capital reserves. In fact in one of the research meetings I had, the statement was made that:

- If an insurance company holds capital at the 99.97% level of confidence,
- Then this will correspond to about an AA rating in solvency terms (more on this issue in Part Three).

Wise management should not feel comfortable with a limited definition of economic capital, or one that is monolithic, because history shows that financial might can quickly turn to ashes. In 1989, at the apogee of the Japanese banks’ brief rise in the world’s financial capitalization, they had an impressive $400 billion in unrealized profits. Then this turned into a $1.2 trillion torrent of red ink – which is very serious because:

- Japanese banks were never strongly capitalized, and
- Their special reserves have been non-existent.

Not everybody appreciates the importance of special reserves, and in some countries they are illegal. Yet, they can be life-savers. On 15 November 2002, after injecting another $1 billion in Winterthur, Crédit Suisse seems to have exhausted its special reserves. This completely changed its risk profile.

The best and simplest way to look at economic capital is as a performance measure which can satisfy unexpected risks within the broader perspective described in this section – doing so by level of confidence. Beyond this, it should be noted that there are three different viewpoints to account for in the calculation of economic capital:

- Shareholders’ perspective

The best way to look at it is through a virtual balance sheet and virtual P&L. This way, capital is calibrated against market prices; book value is too historical and market capitalization is volatile.

- Bondholders’ perspective

Experts think that the best approach in this connection is the one focusing on intrinsic value, which is just as important as capital reserves. Account should also be taken of liquidity, liabilities, and assets.

- Regulators’ perspective

Here the keyword is risk-weighted assets and liabilities, and their impact on regulatory capital. Regulatory capital and risk capital at least at the 99% level of
confidence effectively contributes to financial stability; financial stability improves if banks hold capital and reserves beyond the 99% level of significance. Thanks to the 1996 market risk amendment and the use of VAR, banking culture now widely embraces the 99% level. But what about going beyond 99%? This will be an important exercise in the coming years; a consequence of Basel II. To understand how it can be done, we should return to the notion of the balance sheet.

- Table 6.1 shows a typical balance sheet for a commercial bank.
- Table 6.2 presents a restructured balance sheet, along the lines suggested by Dr Werner Hermann.

The classical balance sheet, established by Luca Paciolo in 1495, does not have levels of confidence. Even economic capital at the 99% level of confidence leaves 1% of all

<table>
<thead>
<tr>
<th>Assets</th>
<th>Liabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cash and cash equivalents</td>
<td>0.8% Inter-bank borrowing (deposits) 10.1%</td>
</tr>
<tr>
<td>Inter-bank lending</td>
<td>12.4 Customer deposits 60.4%</td>
</tr>
<tr>
<td>Securities</td>
<td>8.5 Debt securities 10.9</td>
</tr>
<tr>
<td>Loans and advances to customers</td>
<td></td>
</tr>
<tr>
<td>Gross loan amounts</td>
<td>69.0 Other liabilities 4.6</td>
</tr>
<tr>
<td>Loan loss reserves</td>
<td>(0.8)</td>
</tr>
<tr>
<td>Loans net of reserves</td>
<td>68.2</td>
</tr>
<tr>
<td>Prepayments and accrued income</td>
<td>1.9 Accruals and deferred income 2.8</td>
</tr>
<tr>
<td>Tangible and intangible fixed assets</td>
<td>3.4 Loss reserves (provisions) 1.2</td>
</tr>
<tr>
<td>Other assets, including goodwill</td>
<td>4.8 Subordinated debt 4.5</td>
</tr>
<tr>
<td></td>
<td>Total shareholder equity 5.5</td>
</tr>
<tr>
<td>Total assets</td>
<td>100 Total liabilities 100</td>
</tr>
</tbody>
</table>

Table 6.1 Typical balance sheet for a commercial bank

<table>
<thead>
<tr>
<th>Assets</th>
<th>Liabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current, medium, and long term at fair value</td>
<td>100% Current and medium term 50%</td>
</tr>
<tr>
<td></td>
<td>Capital at 90% 20%</td>
</tr>
<tr>
<td></td>
<td>Capital at 90–99% 10%</td>
</tr>
<tr>
<td></td>
<td>Capital at 99–99.9% 5%</td>
</tr>
<tr>
<td></td>
<td>Capital at >99.9–100% 15%</td>
</tr>
<tr>
<td></td>
<td>100%</td>
</tr>
</tbody>
</table>

Table 6.2 A restructured balance sheet by Dr Werner Hermann, of the Swiss National Bank
cases outside its limits. Usually this 99% of all cases does not include outliers and spikes, but the 1% does.

Extreme events may upset even the most carefully contracted balance sheet and cause default. Therefore, solutions are necessary that go beyond the 99% level. These must be proactive, and they should be designed to enhance the bank’s financial staying power. This is precisely the advantage of Dr Hermann’s proposal.

Let’s recapitulate the message conveyed by this section. Because it is based on expected risks, the day-to-day operational capital shown in Figure 6.2 may be taken as a proxy of regulatory capital. Beyond this comes the tranche of economic capital which augments regulatory capital providing a cushion of comfort at the 99% level of confidence.

To face potential liabilities at the 99.9% level of confidence and beyond, we must restructure the liabilities side of the balance sheet. Not only should regulatory capital and economic capital not be confused with one another, but our bank must also bring into its assets and liabilities a concept of level of confidence that covers the probability of 99.9%, and even goes beyond that level.

6.4 A bird’s-eye view of models for operational risk reserves

Prior to the new capital adequacy framework, money was set aside for operational risk largely on an ad hoc basis. Practically every credit institution used to have its own method, and to a large measure it still does so until Basel II takes hold in January 2006.

Well-managed banks, however, did not take lightly capital needs for operational risk. Many class it as the second most important category of exposure, after credit risk. Research by supervisors, based on data from credit institutions, suggests that the ratio of credit risk to operational risk in the banking industry is roughly 4:1. This being the case, the supervisors originally demanded (in the first draft of Basel II) a capital reserve for operational risk at the level of 20% of credit risk.

That’s what the Basel Committee said as a first instance in June/July 1999, with the early draft of the new capital adequacy framework. Commercial banks reacted negatively to this 20% ratio because they found it to be too high, and in September 2001 it was reduced to 12% – still on a consultative basis.

This is an average, and no doubt both commercial bankers and supervisors appreciate that, in real life, averages do not mean much; they are only of indicative value. Every credit institution should do its own research to establish the relative weights most appropriate to its operational risk in the business environment(s) to which it addresses itself. Furthermore, it should be using its technology to continue upkeeping and fine tuning such weights.

Once again, the best approach is back to basics. Well-managed banks must provide for planning and control over the allocation of their financial resources. Figure 6.3 suggests a basic approach to compound risk management. While the three main channels in this figure are loans, investments, and derivatives,

- Operational risk is omnipresent and
- It is an integral part of each of them.
As we will see in Chapter 7, the Basel Committee proposes five different models for computation of op risk capital. Those of them that are more advanced are, however, not cast in stone. Speaking from past experience, as computational models for operational risks evolve, the way to bet is that both the criteria being used and the models will evolve – and will be neither purely quantitative nor purely qualitative.

The new capital adequacy framework advises that in countries subject to sizeable changes in economic conditions and banking practices, supervisors should consider imposing higher capital requirements to take account of operational risk, and most particularly legal risk. Fair enough, but it is also wise to account for the fact that factors relevant to operational risk change over time in practically all countries. Factors that today make themselves felt at a strategic level are:

- Business policies
- Management culture
- Type of products
- Market characteristics
Diversification

Size of equity and assets

Level of technology, and

Risk management systems.

With only a couple of exceptions, these are largely qualitative factors relating to people and their judgment. Change in people’s attitude is key to operational risk control, but it is not easy to develop operational risk consciousness in an organization. Some people say, ‘We don’t have op risks.’ The challenge is how to get people to:

- Identify their operational risk(s)
- Write them down
- Tally their frequency, and
- Evaluate their impact.

Some people know about the existence of op risks, but have not properly identified them. To do so, they must think of the unthinkable, project on extreme events, challenge current conditions, and evaluate operational aftermath.

As far as the computation of capital requirements is concerned, much of the challenge lies in the fact that management mechanisms, particularly methods of defining and quantifying operational risk, are still embryonic or, at best, at an early stage of development. No ‘best approach’ to operational risk has emerged so far but, as we will see in this and the other chapters of Part 2, the Basel Committee on Banking Supervision is working on different alternatives.

Some of these alternatives are based on a simple algorithm, others are more sophisticated; the latter are still at early stages of their development. Following consultation with the banking industry, Basel has specified five methods of measuring operational risks. In the following chapters we will scrutinize each of these methods. Here is a bird’s-eye view:

- Basic indicator
- Standardized approach
- Internal measurement
- Loss distribution, and
- Scoreboard.

The last three methods are collectively known as the advanced measurement approaches (AMA). From the very simple basic indicator to the scoreboard which is the more sophisticated of AMA’s, these five methods represent a range of possibilities for allocating operational risk capital. From simple to complex, these methods are characterized by increasing risk sensitivity and sophistication in computational solutions.

The reader should nevertheless appreciate that even the most sophisticated and accurate approach to the calculation of operational risk capital has the shortcoming that the established requirements change over time. There is no way out of the need for steady review and adjustment.
In my research, I asked many companies how they update their operational risk control requirements in a way that is cost-effective. The best answer I got is Citigroup’s adjustment factor for economic capital allocation. The way Dr David Lawrence, Citigroup’s European Head of Risk Methodologies and Analytics, phrased it, because the frequency of review is a compromise between precision and cost his company chose quarterly adjustment through the formula:

\[
EC_1 = C_0 \sqrt{\frac{R_1}{R_0}}
\]

where:
- \(EC_1\) = this quarter
- \(EC_0\) = last quarter
- \(R_1\) = revenue in channel \(k\) this quarter
- \(R_0\) = revenue in channel \(k\) last quarter

The method is easy to implement, uses existing data, and gives results that are reasonable. Revenue is taken by channel, not bank-wide. The square root rule was adopted because relation between economic capital and revenue is nonlinear. Studies have shown revenue by channel to be a better metric of gross income.

The quantitative square root rule is supplemented by qualitative adjustments that lead to scaling based on auditing results. This starts with the concept of business issues (BI) and major business issues (MBI), each MBI weighting three times a BI. The next important factor is aging, past the date the op risk should have been fixed. Then comes the auditing score and risk level (low, medium, high) leading to a quality weight which can range from 1 to 15. (The risk level affects the frequency of auditing.)

Dr David Lawrence kindly explained Citigroup’s qualitative weights used in conjunction to the quantitative square root rule. These qualitative adjustments rest on the results of auditing which, after looking into operational risks, classifies them into:

- Business issues (BI), and
- Major business issues (MBI), weighting \(3 \times BI\).

Another factor is aging, past the due date the operational risk should have been fixed. The algorithm is:

\[
BI \text{ or } MBI \times Aging = \text{Preliminary Issues Score (PIS)}
\]

Across the entire corporation, there could be hundreds of outstanding business issues. The peak is immediately following a large merger, but Citigroup’s industrial engineers quickly redress the op risk pattern. An ogive curve like the one shown in Figure 6.4 converts PIS to an audit issues score (AIS).

\[
AIS \times \text{Risk level} = \text{Quality adjustment factor (QAF)}
\]
Three different risk levels – low, medium, and high – define frequency of operational risk audit. The computed values taken by QAF vary from 1 to 15, and they impact on economic capital allocation for operational risk. Altogether, Citigroup’s qualitative and quantitative effort for operational risk valuation is a first class solution.

6.5 The choice among methods for operational risk modeling

Theoretically, but only theoretically, the more sophisticated modeling of operational risk is accompanied by a corresponding reduction in capital charges. The practice will most likely show otherwise. What is important to note, however, is that the existence of alternatives gives banks the freedom to move to more advanced risk management techniques. Supervisors should encourage them in doing so as well as guiding them in appreciating that they need both a policy and a model, to manage operational risk through time. Banks have to:

- Create the database
- Calibrate their model(s), and
- Benchmark and stress-test the model(s).

For its part, senior management must understand the different levels of operational risk, and their change over time. The key to successful modeling, whether for operational risk or any other reason, is the existence of rich databases. This has led to consortiums of big banks pooling their data resources.

For instance, ORX is a consortium of a dozen banks, run by a joint steering committee. ABN-Amro is one of them. Among other credit institutions are: JP Morgan Chase, Deutsche Bank, BNP Paribas, and Canadian Imperial Bank of Commerce. (See Chapter 9 for a description of the ORX project.)
The first goal of the ORX Consortium is data pooling for creation of a wholesale banking operational risk database. Also part of the effort is the identification of key risk indicators. The other goal is mutual handholding in:

- Getting operational risk consciousness, and
- Developing op risk control expertise.

This is the point that was made in section 6.3 on economic capital. At ORX, particular attention is paid to organizational risk. We have spoken of management risk and organizational risk in Part 1, emphasizing the fact that they are at the top of the op risk pyramid of a modern financial institution.

Simple models like the basic indicator approach and the standard approach don’t account for legal risk, management risk, and IT risk (see respectively Chapters 3, 4, and 5). But AMA solutions should do so. (The ORX consortium is using the loss distribution approach. An internal control matrix is described in Chapter 9 (see section 9.6, Figure 9.7).

A rapid identification of what each of the five Basel methods entails for operational risk control will help the reader to better appreciate the criteria that should enter into the choice.

The basic indicator is intended for small, unsophisticated banks; it practically does not involve measurement of risk. Capital charge is determined using an indicator such as gross income, according to the provisional definition of:

- Gross income = net interest income + net non-interest income

Net non-interest income includes fees and commissions receivable, less fees and commissions payable, the net result on financial operations and some other elements. This definition excludes extraordinary or irregular items. Income is to be stated before deduction of operational losses.

The shortcoming of the basic indicator method is that it involves just a generalized, not-that-reliable estimate of operational risk. It is only reasonable that bank supervisors expect medium size to larger banks, and surely the internationally active credit institutions, to use a more precise methodology. An upgrade is the standardized approach, which, however, does not account for the fact big financial entities have not only a significant but also a polyvalent operational risk.

With the standardized method, operational risk is measured using an indicator that reflects the volume of the bank’s activities with each business line. For instance, retail banking, other commercial banking, trading, payments, and settlements. As has already been briefly discussed in Chapter 2, eight business channels and seven classes of operational risk have been identified by the Basel Committee (for greater detail see Chapter 7).

With this method, the operational risk is weighted by a capital factor specified by the supervisors. Remember, however, that this approach, too, represents only a rough measurement of risk, since it is not based on any loss data specific to the institution. Therefore, the Basel Committee would like to see banks advance from the standardized approach to the internal measurements method, which provides greater accuracy.
The prevailing opinion is that the incentive to opt for this upgrade is lower capital charges. This might be true if all goes well, but it is not a foregone conclusion. Neither should a sharp reduction in capital charges be a primary objective. This will expose the credit institution to unexpected risks, as discussed above in connection to economic capital (section 6.3).

- Downsizing capital charges should never be senior management’s goal.
- Rather, the aim must be right-sizing and that’s where models can help.

Experience will tell which way the chips fall in terms of operational risk modeling and its deliverables. Banks are given, by Basel, the option of applying the internal measurement approach only to some lines of business to begin with. Such partial use can lead to a more generalized application of sophisticated approaches.

Bankers with whom I discussed the internal measurement approach like the concept because it takes account of a credit institutions’ individual experience of loss data connected to operational risk. The latter is measured by business lines and types of loss such as:

- Write-offs
- Legal costs, and
- Other charges.

A more complex version of this method is that a distinction is made not only by line of business but also by exact type of operational loss in each business line. Management determines the scale of expected operational exposure, by each type of loss and business line, on the basis of internal loss data, supplemented, when necessary, by external loss data. The latter is the objective of consortia like ORX.

With both versions of the internal measurement method, overall capital requirements are calculated by multiplying these expected losses by a capital factor specified by supervisors. This approach can be made more accurate by means of a fourth method currently under discussion, known as loss distribution – which is the second of the advanced measurement approaches.

Under loss distribution, banks may determine capital needs associated to their operational risk using their internal models. These will in all likelihood include risk mitigation techniques, such as insurance against some types of operational risk (see Part 3). The supervisory assessment of this possibility is currently being studied – including qualitative standards that have to be met to use the advanced approaches under discussion.

While the supervisors are open to more sophisticated solutions, commercial bankers find themselves constrained by the lack of both accurate and complete operational risk data. Throughout this section, the reader’s attention has been brought to the fact that database deficiencies can well prove to be a stumbling block. This is particularly true of the most advanced of the AMA methods: the scoreboard.

To help the reader, a number of analytical methods and tools that can serve scoreboard solutions are described in Chapter 8 and 9. These are time-tested tools, and they have given, in other applications, first class results. It is wise to remember,
however, that – as cannot be repeated too often – in all analytical solutions 80% of the challenge is with data, and only 20% lies with heuristics and algorithms.

6.6 Capital standards and operational risk control costs

Several national bankers associations have supported, and continue to support, the Basel Committee’s efforts to align more closely capital standards with actual risk. They do so by promoting the opportunity for banks to use internal risk-oriented models to assess the adequacy of their capital reserves. An example is the internal ratings-based (IRB) approach, as well as the recognition of credit risk mitigation in setting the level of capital support.

The regulators suggest alternatives and they can provide guidance in implementing them, up to a point. But it is up to the commercial banks and investment banks to properly define the capital necessary for each major class of risk, within their own business environment, and establish valid ways to control it. Management control costs money. It is therefore necessary to optimize cost and the benefit under perspective.

As my research documents, many banks are still searching for an estimate of how much the operational risk control project is going to cost them. There are organizational and management costs that need to be budgeted over and above the necessary capital reserves. Early estimates by banks which have undertaken serious projects for the control of operational risk, indicate that costs connected to:

- The op risk study, and
- The system to be put in place

will be fairly significant. An estimate by the Bank of Ireland is that the cost will be at Y2K level (see Chapter 3). Other banks, too, have come to similar conclusions, citing the fact that because they are still in the learning phase of operational risk control, the project will be expensive. This is part of the cost of staying in business, as Chapter 16 documents.

Some credit institutions think of cutting corners in operational risk control studies, but others aptly suggest that in the longer run this will be counterproductive. Skipping the discovery and experimental phase, for example, will prove to be very costly later on. Rigorous operational risk control studies are justified because of:

- Technology and innovation
- Globalization and deregulation
- Intensifying competition
- Increased customer demands
- High profile op risk failures, and
- Steady regulatory pressures.

Both cost and benefit have to be demonstrated to justify a budget for op risk control. Money must never be thrown at the problem. The board and CEO should require clear evidence on cost/benefit, even if some expenditures might be considered mandatory within the realm of Basel II. Critical questions are:
Where to focus first
- How much to spend, and
- What the company gets for its money.

None of the answers to these queries is evident a priori. Will the operational risk controls, to be established, reduce the probability and financial impact of operational risks? In short: ‘What’s the value?’ A valid answer requires documentation, which should include:

- The frequency and impact before the controls
- The frequency and impact after the controls, and
- The change in loss distribution over a period of time.

I would strongly advise using this method with all three advanced measurement approaches, briefly discussed in the previous section. Cost/benefit measurements should blend with the analytics (see Chapters 7–9). The most important factor, which may make or break the whole effort, is top management commitment to the control of operational risk.

Several commercial banks commented that operational risk should not be handled only from the viewpoint of capital adequacy connected to Pillar 1, but should include the monitoring and supervisory approach proper to Pillar 2. I would think that also Pillar 3, market discipline, is crucial. In fact, all three pillars should be reflected in operational risk control.

The problem with putting all hopes of control on one pillar is that no two banks have the same recognition of operational risk, which continues expanding to new areas. Figure 6.5 dramatizes this ongoing business expansion by means of overlaying areas that include a significant amount of operational risk.

![Figure 6.5](image-url) The overlapping worlds of financial institutions. (Modified from Swiss Re, Sigma, No. 7/2001)
A very important organizational effort is needed to be in charge of this situation. Capital is important, but there should be no overemphasis on capital as a substitute to sound management and rigorous supervision.

Some commercial banks are concerned about the lack of detail on the variety of operational risk components. They criticize the fact that setting capital requirements for different op risk at approximately 12% of capital, is arbitrary and not consistent with their own estimates of operational risk exposure (which they say are much lower, but provide no statistics to prove it).

I am not impressed by these arguments. My own research has documented that most banks, indeed the majority, have only a faint idea of operational risk factors and of the exposure these entail. Capital for operational risk is not a matter that can be settled through horse trading.

At the risk of being repetitive, let me draw attention once more to the data problem, which further complicates the challenges I have just explained. Most banks have not captured the data necessary to evaluate operational risk, even theoretically. Attempts at capturing operational exposure through statistics reflecting historical market risk and credit risk losses – one of the options I heard about – are infantile, apart from resulting in double counting between operational risk, credit risk, and market risk.

It is not true that business diversity assists in reducing operational risk. If anything, it increases it. This is the background against which should be seen the effort at operational risk control. With this in mind, we should take another look at regulatory capital and economic capital, discussed in sections 6.2 and 6.3 above, as well as the means through which capital can be allocated to operational risk in a way that effectively supports the bank’s objectives.

6.7 Allocating regulatory capital and economic capital to operational risk

Though our goal may well be one of the advanced measurement approaches, as a dry run it makes sense to start by checking what the regulatory charge capital may be for every business line and every risk factor defined by the standard method (see Chapter 7). This will be a good training for the people in the operational risk control project, and it will also provide a frame of reference. From there we can progress toward a detailed analysis concerning every product and service, and every op risk we choose to consider.

A dry run helps to define the more detailed method we will be using. It will also permit a first estimate of how much money we may have to put into the control of operational risk. Another benefit is that it teaches the analysts to be objective, not subjective, fencing reactions such as:

- ‘This operational risk event will never happen to our organization.’
- ‘Traditionally we did not have to pay attention to this type of op risk.’
- ‘The probability of losses is a small fraction of what it takes to control this operational risk.’
The crucial issue in a dry run is that what we do is reasonable in respect of the method we are adopting, like hypotheses on the frequency and impact of operational risks, and economic capital allocation to each risk type. In fact, the dry run will be so much more successful if we take things that we know about operation risk, and try to cast them in a format fitting the problem we face.

When this preliminary phase of work has been accomplished, we will be faced with the problem of capital allocation. Money acts as a common denominator. But which money? The 12% advised by the Basel Committee? The gross income by major product line? Or, something else?

Some experts say start with book equity. That is not the right approach. Book equity is not a good measure, because book value rarely, if ever, corresponds to market value – or to economic capital in the broader sense discussed in previous sections. Also, book equity tends to have a weak correlation to operational risks, which may be the reason Basel did not adopt it.

Another problem is that book equity is most often a virtual notion, often with little reference to real assets that can back up operational risk reserves. Several banks working on AMA now consider economic capital as a better framework for calculating operational risk reserves than regulatory capital and the 12% of capital adequacy rule associated to it. The downside is that:

- Some operational risks are not easily correlated to economic capital, and
- As we have seen, economic capital has no unique industry standard, since a good deal depends on the level of confidence – if not its outright definition.

Deutsche Bank, for example, relates economic capital to return on equity (ROE) calculations for management accounting purposes. Other credit institutions still follow their own definition of entrepreneurial capital, which I advised at the beginning of this chapter that it is better to put at rest.

As a start, I would advise following either of two solutions. The one is to adopt the gross income level of reference, but by product line and eventually by single product. The other, is to take economic capital at the 99% level of confidence, also at product line and product detail.

If with this or a similar approach capital allocation for operational risk reasons is established, then the dry run will provide an initial capital allocation matrix. Its goal should be to enable project managers to evaluate advantages and limitations of the method, project on its accuracy, and evaluate its effect on operational risk control. Senior management should answer the following questions:

- Should the operation risk project choose a single methodology or different ones by type of op risk?
- How should we be pricing internally the operational risk control services?
- Should the audit committee and the auditors be involved in evaluation of results?

No bank, to my knowledge, has given ‘best answers’ to these questions, which might be looked upon as a de facto standard. And there is always the challenge of where exactly to start. There is also the age-old, but still ongoing, discussion about
top-down and bottom-up approaches to identification of operational risk and capital allocation.

It is unwise to enter into top-down and bottom-up arguments because in the last analysis the background principle is the same: Whether top-down or bottom-up, the study should have as a goal to highlight operational risk, heighten awareness of it in the organization, and provide the funds to face op risk events. Just for the record, a top-down approach typically starts with:

- Corporate strategy
- Critical risk factors, and
- Enterprise-wide value-based analysis.

By contrast, bottom-up concentrates on:

- Data collection
- Modeling, and
- The choice of a capital allocation method.

The two will eventually map into one another. Therefore neither approach (whichever might be chosen) should be done independently of business operations, try to deliver everything at once, or lead to an unbalanced assessment of risks. Also neither approach should bet on quick gains, or give the impression of being a one-off effort.

In conclusion, the upside of a co-ordinated approach to capital allocation which is based on some critical choices for operational risk control and its funding, helps to highlight the bank’s own op risk requirements with some accuracy. The method I have been suggesting in this section has already been used as an internal measure of credit risk exposure and it had the advantage that it led to annual benchmarking with peers. The following case study presents an example.

6.8 Capital at risk with operational type losses: a case study

Bank ABC has been an early starter in studying capital allocation for operational risk reasons. Along the line of the start-up framework discussed in the previous section, it computed capital allocation for five business lines and the seven types of risks defined by the Basel Committee on Banking Supervision. The chosen method was actuarial loss models constructed for each business line and for each operational risk event.

The first impulse was that of implementing game theory. This was chosen for two reasons. Game theory was considered to provide a faster, if not outright better, solution than extreme value theory. And, at the same time, it was thought that game theory would waive the need, for at least a decade, of a rich operational risk database – which simply was not on hand.

The deliverables of game theory, however, were disappointing, and this called for a change in strategy. Separate frequency and severity modeling was done using Monte Carlo simulation. Then, capital at risk was defined as a function of the loss distribution in each business line/event type junction, weighted on tail scenarios.
Capital at risk was adjusted for diversification and correlation effects.

Business line and bank-wide capital was determined through aggregation of cell results, junction-after-junction in an op risk capital matrix.

Superficially, it may look as if this is a totally different approach than the one suggested in the previous section. In reality this was not the case, because (as a start) the standard method was chosen – reduced to five product lines, but augmented in terms of sophistication regarding the tools being used. This is the very sense of the dry run to which reference was made.

As experience accumulated, within a reasonably short timeframe, high frequency and low frequency operational risk events were identified, quantified, and profiled. A compromise was sought between the ideal solution where an op risk model will use available information elements that contain specific types of characteristics, or can lead to them, and the practical fact that:

- The operational risks content of the database was wanting,
- While a great deal of available information, including opinions research, was qualitative.

Alternative scenarios to capital requirements were considered, such as getting insurance coverage for some of the operational risks. Senior management asked the question: ‘Is buying insurance a good way to avoid too high capital reserves?’ Theoretically, the answer looks as if it is ‘yes’. Practically, however, the analysts found a number of limitations to this approach. Not the least were:

- The case of unforeseen events not covered by insurance policies, and
- Extreme events that insurers would not like to cover (at any premium).

One of the challenges faced by the analysts involved in this project has been the fact that what happened ‘last year’ may have very little to do with what happens ‘this year’ or ‘next year’. As the project progressed, this challenge was magnified by the fact that:

- Some operational risk losses are rare indeed, and
- When they exist, dependable data is unavailable or sparse.

An integral part of the solution to this challenge was the assessment of forward-looking changes in the management of operational risk exposure. This was engineered through the definition of early indicators and the use of what was called ‘non-loss data’ such as the quality of a bank’s internal control environment. An attempt to employ near-misses failed.

The Delphi method was employed to integrate expert judgment into a system of ranking operational risks. A battery of tests was developed amounting to a multi-attribute decision model designed to accommodate qualitative information and to provide quantifiable results. By breaking decisions down into manageable parts, the methodology that was chosen facilitated the application of expert judgment not only to isolate key factors that determine relative risk rankings, but also:
■ To measure operational risk likelihood, and
■ To provide expert opinion on the most probable impact (mean value, range).

The results obtained through the Delphi method were used directly or as inputs to further analysis. This can be one of the most imaginative scoreboard approaches; others will be discussed in Chapters 8 and 9. To help along the aforementioned line of research and of reasoning, operational risks have been classified a priori into five types of impact:

■ Catastrophic
■ Severe
■ Average
■ Low impact
■ Negligible.

Both catastrophic and severe are high impact. The difference between these two classes is that catastrophic disrupt business continuity. Three classes of frequency were chosen, the classifications being:

■ High frequency
■ Medium frequency (typical)
■ Low frequency.

Expert opinion was used to evaluate impact and likely frequency. Senior management asked the project team to provide an evolutionary approach open to adjustments, as operational risk data is collected and deeper experience with losses associated to different business lines and op risk events grows. A richer database allows assumptions that have been made about frequency and impact:

■ To be validated or rejected, and
■ To be objectively updated as time goes on.

A rough statistic based on this project indicated that about 75% of operational risks being encountered are of the negligible/low impact/average type; while the balance comprises higher impact events (severe, catastrophic). Senior management decided that a unified rating system would be applied throughout the institution, after the pilot study moved into daily implementation in a couple of chosen channels.

This and similar projects provide insight which helps in understanding the evolution of operational risk control systems and practices. One of the lessons learned through the aforementioned experience is that policies and measures to control operation risk must account for the fact that:

■ It is lurking in all operations, and
■ A normalized frame of reference helps in developing enterprise-wide solutions.

Experts should be called into the act of projecting operational risks, so that it becomes possible to plan in advance, accounting for the aftermath of exposure to each
operational risk under consideration. Policies must be in place to assure that each error, failure, and delay becomes:

- Visible and
- Measurable.

Visibility increases with real-time data capture, and evaluation standards becoming an integral part of the operational risk framework. Norms should exist for every type of operational risk faced by our organization, and they must be regularly updated. Tools should be in place to permit self-assessment. There is no such thing as a one-shot ‘best solution’. If the operational risks being targeted persist, this should constitute a ground for deselecting an originally chosen method.

6.9 Operational risk control at the Erste Bank

The Erste, Austria’s second largest credit institution, has 10.7 million customers in five countries and about €121 billion in assets. Senior management has chosen the loss distribution approach to operational risk control, under the assumption there will be incentives in terms of capital relief, and the Advanced IRB method for credit risk. Other product lines will start with Foundation IRB, with the goal to transit to A-IRB.

Because of the 1997 merger between the Erste and Austria’s savings banks treasury institution (GiroCredit), which brought together two different systems, a large part of the data collection effort, including op risk identification, had to be done manually. This data collection project went back to 1999. Subsequently, it benefited from the fact that since 2001 op risk data collection has been decentralized on Excel spreadsheets.

Main sources of manual work have been the audit reports, security reports, and customer complaints. Business lines, event types, and operational risk processes have been defined and specified for all day-to-day tasks. This approach permitted value-added solutions. Control has been maintained by comprehensive features and a range of monitoring and reporting tools.

The Erste Bank study found lots of high frequency/low impact (HF/LI) events (see Chapter 8). Interviews with experts helped to identify LF/HI events, with scenarios based on significant losses. Particular attention was paid to op risk losses, which go directly into the profit and loss statement. The following points identify the major findings of this study, presented by Franz Reif, Head of Group Risk Controlling, Erste Bank, at the 2003 Basel Masterclass:

- The quantification of risk requires frequency and severity to be modeled separately
- Frequency is best modeled by a Poisson distribution
- The severity distribution is lognormal, and
- The integration of frequency and severity distributions is effectively done by Monte Carlo simulation.
A snapshot of the two distributions is shown in Figure 6.6. The Erste Bank paid significant attention to tail events for which have been used internal data and scenarios elaborated between headquarters and the business units. Distributions obtained from public databases as well as from operational risk data consortia of other banks have also been of assistance.

With the aim of fulfilling high quality criteria, a risk assessment method has been developed in collaboration between the operational risk control project and the bank’s risk management organization, as well as the security department, and auditing. Senior management expects that, with practice, the chosen approach to operational risk assessment and control will turn into risk self-assessment; and that it will also change the bank’s culture in regard to risk management.
Notes

7 Five models by the Basel Committee for computation of operational risk

7.1 Introduction

The five models advanced by the Basel Committee on Banking Supervision for computation of operational risk charges are shown in Figure 7.1 on a double scale: expected amount of capital allocation, and complexity. Top to bottom, they range from the simplest, basic indicator approach, to the more sophisticated scoreboard. In fact, there will be a family of scoreboard approaches, not just one of them. Practically every financial institution will develop its own, though these will undoubtedly have common elements outlined in Chapters 8 and 9.

The alternatives shown in Figure 7.1 are still under study, but financial institutions should not wait for the ultimate in operational risk control. The operational risk control solutions we are after, particularly the more complex, will be based on models. Several will be novel. Today nobody has the ‘best’ solution. As the reader is aware from Chapter 1, everybody is learning about operational risk and how to control it.

Companies should not be afraid to develop experimental approaches for operational risk control, even if they are imperfect. As pointed out in the preceding chapters, in 10 years from now nobody would have the same solution as they developed today. Mathematical models evolve over time. Opinions, hypotheses, algorithms, and heuristic solutions for operational risk control are and will most

![Figure 7.1](image)

Figure 7.1 Capital allocation will likely vary with the operational risk calculation method being used
likely be different from one entity to the next, though we may have a consensus on:

- The kind of data that is necessary
- Its analytical treatment, and
- What constitutes acceptable cost for op risk control.

Chapter 6 has raised the cost/benefit question: At what point is the cost of operational risk immaterial relative to the cost of managing it under the dual perspective of high frequency events with low impact, and low frequency events with high impact? (See also Chapter 8.)

In a way not unlike the control of credit risk and market risk, providing solutions to operational risk problems is a learning curve. Therefore, companies that are serious about operational risk control do not try to address all types of operational risks at the outset. This is a prescription for failure. Chapter 6 has made reference to this fact. Solutions must be:

- Focused
- Pragmatic
- At the right strength level
- Implementable and manageable
- Scalable and changeable
- Cost-effective.

Valid solutions take account of different perspectives and definitions of operational risk. The way we manage operational risk is affected by the manner in which we view it, the board’s and CEO’s determination to come to grips with op risk, the skills and tools at the regulators’ disposal, and our resolve to put op risk under lock and key. This is, in the last analysis, the reason why Basel II wants banks to put aside capital for operational risk control.

7.2 The effort to measure operational risk and the basic indicator approach

The point that operational risk control is everybody’s responsibility – and most particularly every manager’s – has been made on several occasions. The methodology shown in Chapter 2 in regard to operational risk classification and identification has in its background the need to develop an op risk control culture. Part of the discipline for operational risk control is gathering and databasing information through a rigorous data collection process.

- Tracking operational risk data by business line
- Monitoring loss events and gathering loss information, and
- Allocating op risk losses between properly identified risk classes.

These are basic prerequisites for the successful implementation of all of the five models advanced by Basel for operational risk control. The possible exception is that
Five models by the Basel Committee for computation of operational risk

of basic indicator approach if, and only if, the bank plans to stay with it rather than graduating to more accurate – therefore more complex – and data-hungry solutions.

In the whole range of modeling possibilities, from the standard approach to the scoreboard, it is important to keep in mind that an operational risk is better managed when it is mapped to a risk indicator and has a cause-and-effect relationship.

- With losses resulting from this op risk related to its appearance, and
- With a control system being put in place able to follow op risk events and non-events step-by-step.

A basic prerequisite to an effective operational risk control is to understand the inherent frequency of operational risk events, as well as the likelihood of failure of prevention measures. By ‘non-events’ is meant op risk appearances that, according to cause and effect, should be there but fail to show up. The effective use of reporting practices to swamp operational risk, and the ability to minimize data collection costs, are two other prerequisites.

With the possible exception of the basic approach, no matter which of the Basel Committee methods we choose, our strategy should be to comprehend the operational risks we are confronted with, identify them, monitor them, transform them, and eventually accept minimal low impact op risks. This acceptance should be pragmatic. The British Bankers Association says: ‘We don’t believe you can measure operational risk in anything similar to the way we measure credit risk and market risk.’

At the same time, however, the British Bankers Association points out that there are some operational risks where tolerance must be zero. At its basic level, a credit institution’s tolerance of operational risk has to do with:

- Amount of losses in a worst case scenario
- Frequency of appearance, and its underlying causes, and
- Brand name risk and Pillar 3 of Basel, that is market discipline.

Again, no matter which of the Basel Committee models we choose, organizational and procedural changes, which help in controlling operational risk, cannot and should not be avoided. An example is so-called ‘sunset clauses’ for job descriptions. Because operational risk is, to a large extent, human risk, there must be clauses that, for instance, specify:

- ‘Approval to handle transactions is valid from time t_1 to t_2 (say, one year),’ or
- ‘If a person does not do any of the authorized operations in time t, the authorization ends.’

Life-long learning about operational risk control is another basic requirement. There is always a learning curve. From time to time traders do a rare type of transaction, but in between the rules and regulations may have changed. Compliance will suffer if they are not updated on new rules. Also when the bank’s internal policy changes without updating of skills, traders, loans officers, and other professionals will still execute in the old way, which leads to operational risk.
Sunset clauses on job description and the steady updating of skills aimed at swamping operational risk is a different way of saying that op risk events and their likelihood should also be examined from an applied psychology viewpoint. Applied psychology looks at operational risk from a triple perspective:

- Antecedents
- Behavior
- Consequences.

The most powerful classes of antecedents are those describing expectations and linking to results as well as to specific consequences. The human factors embedded in operational risk bring into perspective the wisdom of having in place a system of merits and demerits, which roughly corresponds to the proverbial carrot and stick.

This is not only true of complex approaches to operational risk control; even the standard approach requires that attention be paid to human factors. But, as I have already mentioned, the basic indicator approach (BIA) is so elementary that it might be exempt from the human factors requirements. Its capital charge is one lump sum, too coarse to allow reflections on individual performance in keeping operational risk under lock and key.

Banks using the basic indicator approach solution must hold capital for operational risk reasons equal to a fixed percentage denoted by α (not to be confused with α, the level of confidence in an operating characteristics curve). The algorithm is:

$$K_{BIA} = \alpha \cdot EI$$

where:

- $K_{BIA} =$ Capital charge under BIA
- $EI =$ Exposure indicator for the whole institution, provisionally based on gross income
- $\alpha =$ Constant (fixed percentage) set by Basel

In September 2001, the formula became:

$$\alpha = \frac{0.12 \cdot MRC}{GI}$$

where:

- $MRC =$ Minimum regulatory capital (e.g. 8% of the bank’s risk-weighted assets)
- $GI =$ Gross income

Gross income is averaged over a 3-year period, α. Following QIS3, Basel set the fixed percentage $\alpha = 15\%$.

What exactly is represented by gross income is discussed in section 7.3. Notice that if GI is taken by each of eight business lines, and if we distinguish between seven different types of operational risk, then we transit from the basic indicator approach
to the standard approach by Basel. This 8×7 operational risk matrix introduces enough detail to bring human factors requirements into perspective.

7.3 Capital charges under the Basel Committee’s standard approach

One basic element the basic indicator approach (BIA) and the standard approach (SA) have in common is that they use gross income as a proxy of operational risk exposure. There the similitude ends, because contrary to BIA, which looks indiscriminately at the whole institution’s gross income as indicator of op risk – and, therefore, as a basis for capital charge – as we will see in this section, SA differentiates between classes of operational risk exposure.

This makes Basel’s standard approach a more detailed method for calculating capital requirements connected to operational risk, and positions it at the root of a family of modeling solutions whose gradual evolution in complexity is shown in Figure 7.2. Precisely for this reason, in Chapter 6 I have suggested that a dry run for capital allocation for operational risk can benefit by using the standard approach as a first step towards more detailed modeling. The Basel definition of gross income is:

\[
\text{Gross Income} = \text{Net Interest Income} + \text{Net Non-Interest Income}
\]

and

\[
\text{Net Non-Interest Income} = \text{fees} + \text{commissions} - (\text{fees and commissions payable}) + \text{net result of financial operations} + \text{other income}
\]
In the ‘other income’ component of net non-interest income should not include extraordinary or irregular items. This means that the measure of ‘other income’ should reflect income before deduction of operational losses.

With the standard approach, gross income is divided among eight pre-determined business lines. A β_i multiplier is applied to the income from each one of them (more on this later). The capital charge is the sum of these eight product line products. Note, however, that the Basel Committee is still considering the levels of β_i, and the same is true of α in connection to BIA.

Why should ‘gross income’ be taken as a basis for operational risk charges? This is a question often asked by bankers and the answer has been partially discussed in Chapter 6. An evident problem with gross income is that the more money an entity makes the more it is taxed in terms of op risk capital reserves – even if its business does not have a high level of operational risk.

But other methods, too, have their downside. One banker I spoke to suggested that an easy answer to the query ‘Why should gross income be taken as a proxy?’ is ‘Why not?’ He immediately added, however, that a more managerial response would be ‘Which are our alternatives?’ In the following, I have classified the operational risk indicators discussed by Basel:

Criteria based on financial statement figures

- Gross income
- Number of employees
- Total compensation
- Book value of assets
- Market value of assets
- Deposits
- Number of client accounts
- Number of accounts and their average balance.

Criteria reflecting actual value of transaction

- Number of transactions
- Value of transactions
- Mean value and standard deviation of transactions, within a quarter
- Idem, but in connection to annual value of transactions.

As the reader will appreciate, none of these alternatives is perfect. But an advanced method approach (see section 7.4) might select and use more than one of them. This is with the proviso that the regulators approve such a solution, and the bank choosing it is consistent in its application.

Let’s now look more carefully into the operational risk capital charge under the standard approach. As shown in Figure 7.3, the financial institution’s business activities are divided into eight major product lines, each having associated to it a constant β_i. (The reader will recall that we briefly looked into this matrix in Chapter 2, with another reference made to it in Chapter 6.) With SA, gross income must be calculated by major product line, each being characterized by its own β_i.
<table>
<thead>
<tr>
<th>TYPE OF BANK</th>
<th>7j</th>
<th>BETA FACTORS</th>
<th>INTERNAL FRAUD</th>
<th>EXTERNAL FRAUD</th>
<th>EMPLOYMENT PRACTICES AND SAFETY</th>
<th>BUSINESS PRACTICES, CLIENTS, PRODUCTS</th>
<th>DAMAGE TO PHYSICAL ASSETS</th>
<th>BUSINESS DISRUPTION, SYSTEM FAILURES</th>
<th>EXECUTION DELIVERY, PROCESS MGMT</th>
</tr>
</thead>
<tbody>
<tr>
<td>INVESTMENT</td>
<td>8i</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INVESTMENT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMMERCIAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMMERCIAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMMERCIAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMMERCIAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMMERCIAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMMERCIAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMMERCIAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMMERCIAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMMERCIAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OTHER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OTHER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OTHER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 7.3 i,j, business line/event type classification

Investment banking
- β_1: Corporate, government, merchant banking
- β_2: Trading and sales

Commercial banking
- β_3: Retail
- β_4: Other commercial banking activities
- β_5: Payments and settlements
- β_6: Custody, agency services

Other business lines
- β_7: Asset management
- β_8: Retail brokerage

Figure 7.3 also outlines the seven operational risks, j, retained by the Basel’s standard approach. The first algorithm is the constant representing a fixed percentage set by Basel, relating required level of capital to level of gross income. The formula was:

$$\beta_{i,j} = \frac{0.12 \cdot MRC_i \cdot ORS_{ij}}{GI_{i,j}}$$

where:

- $MRC = \text{minimum regulatory capital}$
- $ORS = \text{operating risk share}$
$GI = \text{gross income}$
$I = 1 \ldots 8, \text{business line defined by standard approach}$
$j = 1 \ldots 7, \text{type of op risk defined by standard approach}$

Capital charge is computed by summation of regulatory charges across major product lines through the algorithm:

$$K_{SA} = \sum_{i=1}^{n} \beta_i \cdot EI_i$$

where:

- $K_{SA} = \text{capital charge under standard approach}$
- $EI_i = \text{exposure indicator for each business line}$

Based on Basel Committee statistics, Table 7.1 presents the weighted average of β_i factors for the eight business lines in SA. Notice that in corporate finance the standard deviation is greater than the mean, while in custody and agency services they are nearly equal. Because of this, with a one-tailed distribution a 99% level of confidence will be 347% greater than the mean – which of course leaves much to be desired.

With gross income (GI) taken as exposure indicator, the algorithm of the standard approach becomes:

$$K_{SA} = \sum_{i=1}^{n} \beta_i \times GI_i$$

Each business line must have its own multiplier β_i. As of QIS3, Basel set β in the range 12–18%:

<table>
<thead>
<tr>
<th>Business line</th>
<th>Multiplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corporate finance</td>
<td>18%</td>
</tr>
<tr>
<td>Trading and sales</td>
<td>18%</td>
</tr>
<tr>
<td>Retail banking</td>
<td>12%</td>
</tr>
<tr>
<td>Commercial banking</td>
<td>15%</td>
</tr>
<tr>
<td>Payment and settlement</td>
<td>18%</td>
</tr>
<tr>
<td>Agency services</td>
<td>15%</td>
</tr>
<tr>
<td>Retail brokerage</td>
<td>12%</td>
</tr>
<tr>
<td>Asset management</td>
<td>12%</td>
</tr>
</tbody>
</table>

To effectively handle operational risk through the standard approach a bank must be well versed in database management:

- Identifying exposures to operational risks,
- Assessing potential impact of risk on solvency, and
- Implementing a system of interactive management reporting.
<table>
<thead>
<tr>
<th>Business Line</th>
<th>Median</th>
<th>Mean</th>
<th>Maximum</th>
<th>Weighted average</th>
<th>Standard deviation</th>
<th>Weighted average of typical β by business line</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corporate finance</td>
<td>0.131</td>
<td>0.236</td>
<td>0.905</td>
<td>0.120</td>
<td>0.249</td>
<td>2</td>
</tr>
<tr>
<td>Trading and sales</td>
<td>0.171</td>
<td>0.241</td>
<td>0.775</td>
<td>0.202</td>
<td>0.183</td>
<td>8</td>
</tr>
<tr>
<td>Retail banking</td>
<td>0.125</td>
<td>0.127</td>
<td>0.342</td>
<td>0.110</td>
<td>0.127</td>
<td>1</td>
</tr>
<tr>
<td>Other commercial banking</td>
<td>0.132</td>
<td>0.169</td>
<td>0.507</td>
<td>0.152</td>
<td>0.116</td>
<td>3</td>
</tr>
<tr>
<td>Payments and settlements</td>
<td>0.208</td>
<td>0.203</td>
<td>0.447</td>
<td>0.185</td>
<td>0.128</td>
<td>7</td>
</tr>
<tr>
<td>Custody and agency services</td>
<td>0.174</td>
<td>0.232</td>
<td>0.901</td>
<td>0.183</td>
<td>0.218</td>
<td>6</td>
</tr>
<tr>
<td>Asset management</td>
<td>0.113</td>
<td>0.149</td>
<td>0.283</td>
<td>0.161</td>
<td>0.073</td>
<td>5</td>
</tr>
<tr>
<td>Retail brokerage</td>
<td>0.133</td>
<td>0.185</td>
<td>0.659</td>
<td>0.152</td>
<td>0.167</td>
<td>3</td>
</tr>
</tbody>
</table>

Table 7.1 Standardized approach with eight business lines. Experimental estimate of regulatory capital
7.4 The effort to develop advanced measurement approaches

With the exception of cause and effect relating to well-known operational risks, in cases already established beyond doubt, analytical studies are not only the better way to operational risk control, they are the only way. This section explains how and why analytical approaches help to uncover the reasons for and behavior of operational risks that can hit a company at any time with largely unexpected consequences, and it concludes with one of the advanced methods by Basel II.

In Basel Committee terms the more advanced studies associated with operation risk control and asset allocation come under the heading of Advanced Measurement Approaches (AMA). To my mind, they differ from the standard approach in the sense that they are analytical solutions. It is, therefore, necessary to explain the concept of system analysis and how it can be used in a practical sense, the way it is done by tier-1 credit institutions. As a term, system analysis is composed of two words.

- **System** means an assembly of constituent parts united by interdependence in functioning. The word system is also used to denote a universe.

- **Analysis** is a mental act of investigation and query. Analytical queries help to challenge the ‘obvious’, which may be beliefs, pre-established notions, or prejudices.

Prejudices, Albert Einstein said, are those notions that parked themselves in the human brain before the age of 6. Analysis in the sense of investigation usually, though not always, takes the road of dividing a whole, or system, into its constituent parts and looks at their roots. The next mission is to investigate each of these parts both on its standalone merits and demerits, and as an integral, functioning part of the whole system under study.

Put simply, system analysis makes the difference between what we ‘need to know’ and what we ‘want to know’. Therefore, an analytical investigation truly helps only if management and the professionals know what they need, or what they are after. This contrasts to a standard solution, like SA, because the eight main product lines and seven operational risks which it uses have already been defined by Basel, while analysis, including cause and effect investigation, may be done within each of these business lines and op risk classes.

System analysis lies in the background of all three advanced measurement approaches: the internal measurement approach (IMA), loss distribution (LD), and scoreboard. The investigation promoted by system analysis makes the difference between the operational risk guidelines characterizing the standard approach (which is fixed) and the freedom to:

- Choose a different solution, and
- Bring greater detail to the business line.

To some extent, going towards richer analytics is a one-way street, because once the bank obtains supervisory approval for one of the advanced approaches, it cannot regress backwards. To a greater or lesser extent it has to follow along a line of greater sophistication, and rightly so since this is the sense of moving forward. The analytical approach is part of system thinking, which implies the following:
Stop using humans as number grinding machines.
Develop and implement mathematical models.
Apply mathematical tests of significance.
Steadily evolve the system concept in a feed-forward sense.

In a significant number of cases, the feed-forward element is introduced for prognostication reasons, and it is a basic element of system thinking that aims at framing the present as a function of the future – not of the past. Inference is the keyword in this connection.

AMA also features other prerequisites. A critical one relates to the database and requires that data should go back at least 5 years (see section 7.7 below). A bank must have high technology able to capture, filter, and report operational risk information. It is also necessary to integrate external operational risk loss data to test the model and strengthen model usage.

The Basel Committee says that over a period of time regulators will review and adjust the AMA method chosen by credit institutions. Basel also brings attention to the fact that effective usage of AMA poses challenges of openness, transparency, flexibility, readiness to change, and an action-oriented strategy. This is valid both:

- Within the organization choosing AMA, and
- In the banking industry as a whole.

Financial institutions developing AMA solutions must be expert in business case analysis as well as keen to choose an advanced operational risk measurement and monitoring methodology, best fitting their operations. The actual choice of an exact approach depends on many factors, some of which are internal while others are external (see Chapter 9 on Pillar 3 and market discipline).

Among the three AMA solutions advanced by the Basel Committee, the internal measurement approach (IMA) is the simpler and more structured. In essence, it is an intermediate step between the standard approach and more sophisticated methods. With IMA capital charge is computed by the algorithm:

\[K_{ij} = \gamma_{ij} \cdot EL_{ij} = \gamma_{ij} \cdot (EI_{ij} \cdot PE_{ij} \cdot LGE_{ij}) \]

where:

- \(EL_{ij} \) = expected loss in business line \(i \) because of op factor \(j \)
- \(EI_{ij} \) = exposure indicator, \(ij \), based on gross income \(ij \)
- \(PE_{ij} \) = probability of event (that an operational risk \(j \) occurs)
- \(LGE_{ij} \) = average loss given an op risk event
- \(\gamma_{ij} \) = a multiplier translating the estimate of expected loss, \(EL_{ij} \), into a capital charge, per \(i \) business line and \(j \) type of op risk event

The Basel Committee suggests that the \(\gamma_{ij} \), for each business line and operational risk event type combination will be specified by banks, probably through consortia. \(\gamma_{ij} \) will be subject to acceptance by supervisors, with the overall charge calculated as the sum of capital charges for individual business lines/op risk event type matrix entries.
The reader will remember that the standard approach outlines eight business lines and seven operational risk event types. An analytical internal operational risk measurement model should do better than that. It might take, for instance, twenty or more business channels and a dozen or more op risk event types. This shows that IMA is not a standard approach under a different name, but one that has built-in greater flexibility and can be adapted to the business lines and operational risks faced by a specific bank.

There are, however, shortcomings associated to the internal measurement approach, which mean that IMA is not so popular among commercial bankers and regulators. It needs a multiplier to move from expected losses to unexpected losses. The γ must be produced by business line, but doing so by event type becomes very complex. Most big banks have chosen the loss distribution approach; a few adopted the scoreboard solution.

7.5 Capital allocation with loss distribution approach

It is self-evident that a more advanced solution to measurement and monitoring of operational risk than IMA has to be based on sound internal loss reporting practices. This brings into the picture the need for data capturing, databasing, and datamining requirements discussed on several occasions in the preceding chapters. Accuracy in operational risk loss data is not obtained overnight. Historical information must extend beyond 5 years, and it should be validated and reliable.

The conditions I have outlined here are crucial whether we talk of a bank’s own operational risk data, or of a database created as a consequence of a collaborative effort, like the ORX consortium, which was discussed in Chapter 6. With AMA, reliable operational risk data are necessary all the way:

- From the development of algorithms and heuristics,
- To calculations made through real-life op risk information, and
- Process control, helped by scenario analysis, simulation, and stress testing.\(^4\)

Another integral part of the AMA approach, which is valid to all operational risks, is to have in place an action-oriented methodology that will allow operational risks to be brought under control. The analytical approach may be a powerful tool, but even the most sophisticated toolbox will be of little service if timely corrective action is not being taken to right the balances.

Take Basel’s loss distribution (LD) approach as an example. What is aimed at here, the Basel Committee suggests, is that banks generate estimates of operational risk capital, based on historical measures of losses. Implicit to this statement is the fact that banks will do their utmost to bend the curve of targeted operational risks and cut their losses – hence they will exercise corrective action.

Here we are faced with two sets of loss data, and hopefully with two distributions: ex ante and post mortem to operational risk control. Hopefully, the post mortem mean and standard deviation will be smaller than the statistics of ex ante. However, judging quality performance in a dependable manner requires accurate and detailed operational risk information over a number of years:
Five models by the Basel Committee for computation of operational risk

- By channel, and
- By identified op risk.

Reporting standards, too, should be revised and upgraded. As Part 1 has underlined, reporting should be fully interactive, observe realspace requirements, and make extensive use of confidence intervals. The results we are obtaining from system analysis and operational risk tracking will vary quite significantly depending on the level of confidence we use. Figure 7.4 dramatizes this reference by showing:

- The mean value of a normal distribution and a skew distribution.
- The 95% and 99% confidence intervals corresponding to the skew distribution (more on this in Chapter 8).

A basic principle in system analysis is that action-oriented results must be presented in a way people understand the meaning and are comfortable working with them. This means that reporting solutions will have to be studied, negotiated, and implemented case by case, worked out with senior management and the professionals who will use the data to bend the curve of operational risk.

The 99% level of confidence should be observed throughout the institution, and it should be reported interactively. Operational risk information must be datamined online. Besides real-time operational risk data capture, databasing, datamining, and interactive reporting, attention must be paid to the algorithms that will be used. This

Figure 7.4 Expected value of exposure and 95% and 99% confidence intervals
is an important part of the choice to develop and implement advanced measurement solutions.

The good news is that the effort to develop AMA solutions faces challenges that have already confronted other sectors of the economy. Loss distributions have been investigated by the insurance industry in its work to price risks. A valid statistical loss distribution approach is, to a significant extent, an adaptation of the actuarial process:

- Frequency and severity are modelled independently, and
- The distribution of total losses is computed as a combination of the two.

Some experts have been suggesting that a confidence level of 99% is not enough. ‘Three 9s’ or 99.9% is better. I agree with this statement. Banks that choose the 99.9% level of significance should however appreciate that they have to put aside a greater amount of op risk capital reserves. Set against this, however, they obtain much greater assurance that they are well financed to withstand extreme events.

Let me add that, as of this moment, there is no industry standard for loss distribution, just as there is no industry standard for the scoreboard. Some people say LD is a bottom-up approach, while the scoreboard (see Chapters 8 and 9) is a top-down attempt to capture the loss profile. To my mind, that is nonsense.

- Both loss distribution and the scoreboard try to be forward operational risk calculations, and
- Both must have a rich quantitative basis, which implies a sound initial estimation, historical data, and post mortem data.

Also, both the loss distribution approach and the different scoreboard methods require steady vigilance through real-life tests, to determine a capital charge based on loss data, or some other chosen variable(s), and to allocate such capital charge to the business lines.

In 2002, the Basel Committee conducted an operational loss data collection exercise which can be valuable to the loss distribution methodology. This study gained information on 47,000 events involving operational hazards like fraud, system failure, and settlement errors. Data came from 89 credit institutions in several countries.

Because of the information it has provided, this Basel study on operational risk data is a milestone. The lack of loss information has hindered progress in developing advanced measurement approaches for assessing operational risk under Basel II. Evidence advanced by this exercise shows that loss data exhibits considerable clustering around certain:

- Business lines, and
- Event types.

For example, there is significant clustering in retail banking which tends to experience many frequent but small operational risk events. There are also business line/event type combinations with few to no op risks being reported. However, it is unclear whether low reporting frequency in these areas reflects:
A short data collection window
Gaps experienced in data collection, or
Low probability of events types occurring for certain business lines.

Moreover, low frequency by no means indicates low risk, because operational risk events in this class tend to have high impact. Low frequency/high impact (LF/HI) events (see Chapter 8) are characteristic of exposure by banks and other financial companies to long tail risks. Stress testing can help to unearth valuable information about outliers and extreme events.\(^5\)

A question discussed during the research meeting is where such calculations should be done. There is no one correct answer to this question. Some companies have decided that op risk capital calculations should be performed at group level, followed by allocation to business lines. Others follow the opposite road.

Whichever organizational approach may be chosen, implementation of loss distribution, like that of scoreboard solutions, requires design objectives. One of them is economy: attaining required performance at an acceptable cost. Another is performance, expressed in throughput, timeliness, and accuracy. Still another is implementability. The computational approach of the loss distribution may be based on a matrix of op risk cells:

\[
X_{ij}
\]

This matrix addresses two-by-two the axes in the three-dimensional frame of reference shown in Figure 7.5. The operational risk events being recorded and analyzed will be characterized by a distribution. Tentative statements concerning different types of distributions may be made: normal, lognormal, Poisson, skew, leptokurtotic, chi-square, and so on. These hypotheses will have to be tested.
Sometimes compromises are necessary because, in the general case, one of the design criteria is availability of skills, data, and financial resources to do the required job. While money would not buy a solution, lack of money may inhibit developing one. Finally, due attention has to be paid to expandability. Credit institutions deal with almost steady change in their volume of transactions, nature of business, and losses from operational risks associated to both of them. A flexible model is the best approach, and senior management must look after this issue of flexibility.

7.6 Databasing and datamining information on operational risk

Typically, the underlying database for operational risks will consist of internal and external op risk loss data for all events being traded – including high frequency and low frequency, as well as high impact and low impact operational risks. The reader is by now aware of the fact that there are many prerequisites in developing an operational risk database. Examples include:

- Determining the loss data to be databased in practical business terms
- Tracking the drift from low impact to high impact events
- Costing the monitoring and measuring of operational risk losses
- Performing peer-to-peer studies on op risks, and
- Capitalizing from data swapping between financial institutions facing the same or very similar op risks.

Data swapping is particularly useful with loss information produced as a by-product, which may be of value to other firms in a bank’s value chain. There is really no reason why credit institutions should not collaborate in operational risk control, and data swapping is a way of doing so – provided op risk identification, data formats, and files are homogeneous.

Operational risk databases have to be rationally designed, with both operational risk classification/identification (see Chapter 2) and interactive access and reporting in mind. Banks do not really have a choice of doing otherwise. The building of a first class operational risk event database has become mandatory, as the Basel Committee expects banks to:

- Include operational risk in their loss event records, and
- Have clear policies regarding the measurement of exposure by business line and op risk type.

One of the challenges that have to be faced is that of data uncertainty. Data uncertainty arises from incomplete data streams and from measurement errors, particularly in key variables of the model. It may also arise from faulty filtering. When a measurement error occurs, a response to mismeasured data induces uncertainty in the output and subsequent indecision on corrective action. To attenuate the adverse effects arising from imperfect data, we can sometimes use the whole set of available information to:
Cross-check the imperfect element against other relevant sources of information, and
Gauge the extent to which the data may be subject to a given type of measurement error.

The weight associated with individual information variables should depend on how precisely those variables have been measured. A particularly adverse effect of errors in estimating the quality results is that of bias, which can be long-lasting and/or greater than what is generally accepted as error tolerances. Solution of the op risk database problem requires:

- Ensuring comprehensive coverage through organization
- Increasing frequency and accuracy of data collection
- Addressing data quality issues at every point of each trade
- Associating loss events to each type of identified op risk, and
- Recording the frequency of each op risk as well as its impact.

Data filtering is a challenge which, after being thoroughly studied, can be automatically performed using interactive knowledge artefacts (agents). Able solutions involve applying configurable filters both for input and for exception reports, assuring that a first class data validation process is in place, and monitoring all processes for early detection of op risks.

Results are significantly improved if we both plan and test our preparation to deal with operational risk issues, and data collection associated to them; establish clear responsibilities and accountabilities in terms of op risk information; and coordinate operational risk control with compliance requirements as well as cost control measures. A problem I have often encountered is that companies do not pay enough attention to:

- Tracking each operational risk event
- Identifying the legal issues connected to these events, or
- Maintaining a corporate memory facility (CMF).

Common reasons for being behind in operational risk tracking are: lack of strategic assessment, incomplete classification and identification of operational risks (see Chapter 2), insufficient definition of the different risk types, and a general weakness in databasing which may be due to legacy computer programs and the use of paleolithic computer technology. Other shortcomings manifest themselves from:

- Failures to report the frequency of op risks
- Failures to explore the later consequences of op risk, and
- Failures in implementing interactive datamining.

The latter case is widespread. It is particularly found among institutions that fail to appreciate that datamining has emerged as a class of analytical techniques that go beyond classical statistics. Its aim is that of examining large quantities of data that often involve multiple variables.
Challenges associated with datamining may be statistical in nature but they do go well beyond business statistics, targeting the inference of patterns from data. This calls for an inventory of tools and techniques that aim at examining large quantities of data in search of previously overlooked relationships, or even hints that prove to have specific value in problem solution.

As these issues demonstrate, the system analysis discussed in section 7.4 does not end with loss data and their study. A whole infrastructure has to be built. Under this modern business approach the better definition of datamining is the process of interactive analysis, testing, and extraction of information from databases for the purpose of discovering new and valuable:

- Patterns
- Rules, and
- Trends

from relationships existing, but not easily apparent, between data elements. Because of its potential, datamining is receiving widespread attention in finance and other branches of industry, while companies are increasingly investigating how best to exploit the potential of datamining technology to obtain competitive advantage.

Several credit institutions and other organizations are developing models to aid in analysis, testing, or prediction. Palo Alto Management, a consultancy, suggests that datamining is one of the fastest growing applications areas in the business intelligence market. It is also a multidisciplinary field, which draws from:

- Knowledge engineering
- Database management practices
- Data visualization tools
- Market research projects
- Pattern recognition
- Statistics, and other mathematical tools.

Current research into datamining helps in developing new algorithms, as well as in answering the basic question, i.e. how to perform this activity in the best possible way while keeping costs under check. Classification is one of the better ways of facing the datamining challenge within the realm of operational risk analysis. This is the reason so much attention has been paid to the classification/identification of operational risks in Chapter 2.

Practitioners sometimes complain that the multitude of datamining algorithms appears confusing. In reality, however, the underlying concepts are simple. They include taxonomy, distributions, clustering, pattern discovery, and modeling. Every one of these is vital to the able implementation of the loss distribution approach and of the scoreboard(s).

Clustering is concerned with partitioning data elements into homogeneous subsets. A cluster is a subset of data sharing one or more common characteristics that have been properly defined. This makes them in a way homogeneous for the project on hand. Datamining analytics help to:
Uncover affinities among data consisting of one or more variables, and
Understand the extent to which the presence of specified variables imply the
presence of other variables across a data pattern.

Both points are important in tracking and analysing risk events. Let’s remember,
however, that datamining is not an end, but a means to an end. Its benefits accrue
from the operational results and the assistance these provide in achieving a specific
objective. The contribution of datamining is that of a discovery-driven approach,
almost always with no a priori hypothesis stated for a particular problem under
study.

7.7 Early findings with operational risk models, and the notion
of model risk

It is reasonable to expect that increasing complexity in financial products and in
banking at large boosts operational risks. Just as reasonable is the hypotheses that
different business lines or channels will have different levels of operational risk.
However, banks responding to the second consultative paper by the Basel
Committee said they did not find significant differences between business lines. For
instance,

- β for investment banking was not inherently more risky than β for retail banking
 (see section 7.3).

Subsequently, the Basel Committee has given itself the task of calibrating β for the
standard approach. By contrast, with both the loss distribution approach and with
scoreboard, credit institutions will be so-to-speak on their own in developing patterns
for operational risk based on careful monitoring, calibration, and evaluation
control.

These models help in a predictive sense but opinions among bankers are divided
regarding the extent of this assistance. The British Bankers Association believes that
past operational risk loss data does not enable prediction of future losses. Other
organizational difficulties connected to the modeling endeavor we have been
discussing include what to do with:

- Central functions
- Support activities
- Cost centers
- Profit centers
- Materiality, and
- Quality assurance.

Credit institutions should not believe that models are a kind of penicillin for
operational risk control, or for any other activity. What the use of models does is
provide a level ground for people assigned responsibilities for operational risk
control, while also assuring better awareness about op risks, and a corporate memory
facility to support future effort. Contrasted to the use of models, their development is more instrumental in terms of assistance, because it helps to:

- Clarify thinking
- Identify key variables
- Study their range of variation, and
- Pinpoint outliers.

Models should be used both in connection to normal testing and stress testing, but we should also be aware that there is model risk. Model risk is a term that describes how different models can produce other than the intended results: for instance, different prices for the same financial instrument. Market-wide, these pricing differences have an effect on gains and losses.

Astute traders, with better models, can capitalize on mispricings in other traders’ models which are less accurate than their own. The fact exists, however, that model failures can be significant when (1) only quantitative approaches are used for operational risk management and (2) the care exercised in model building (or model choice) is less than it should be. Model risk originates in:

- Hypotheses being made
- Insufficiency of data
- Algorithms being chosen, and the
- Way the model is being used.

One of the reasons for model risk is that, because they are usually built in an inflexible way, many models do not cope well with sudden alterations in relations among key market variables and factors characterizing financial instruments. Furthermore, Moody’s Investors Service has conducted research indicating that models are not more accurate than analysts’ opinions.

This conclusion is not at all surprising, since standard models for predicting credit quality typically contain less than five explanatory variables, while a top analyst may consider up to 1000 data points. An evident remark of course is that not everybody is a top analyst. Moody’s thinks that models’ benefits probably lie:

- More in performing a monitoring or warning function
- Rather than in arriving at a particular rating opinion.

What Moody’s says about credit models is valuable also with market risk and operational risk models. The danger of overdependence on models is compounded by the fact that the financial industry has not yet succeeded in modeling operational risks in a highly dependable way. For instance, factors escaping modeling, at least so far, are mismanagement, and internal controls. There are also other reasons why models fail. At the risk of being repetitive, I bring them one more time to the reader’s attention.

- Data is deficient, unreliable, or altogether non-existent.
In my experience, this happens in more than 95% of cases. Let’s face it, too many banks still have a rather primitive database, with heterogeneous information elements which it is very difficult to exploit.

- Assumptions and simplifications that abstract too much from the real world.

These typically concern hypotheses on market behavior and key product variables. Also, simplifications like linearities and the wide use of the normal distribution (see Chapter 8).

- Management’s misunderstanding or misinterpretation of the model’s output.

This happens very often because senior management is not aware of the background factors and of what models do and do not provide. Model illiteracy sees to it that many managers do not appreciate the meaning of what they get in terms of model output.

- The entity’s IT infrastructure is a legacy loaded with applications that come from the IT equivalent of the Middle Ages.

A direct result of the so-called EDP-orientation is that the IT system does not work in real-time and does not use interactive datamining and ad hoc visualization. It is not for nothing that the abbreviation ‘EDP’ no longer means ‘electronic data processing’, but identifies emotionally disturbed people. Being stranded in this sort of backwater condition makes it impossible to establish a dynamic sensitivity to operational risks, to do stress testing, and to institute proactive op risk control solutions.

Let me conclude with this comment. Banks have to observe both qualitative and quantitative standards with AMA solutions. Qualitative standards start with an independent operational risk management function, including active involvement of board and senior management, and they extend all the way:

- From reviews by internal and external auditors
- To validation of metrics and models by auditors, as well as by supervisors.

Auditing must verify internal control processes (see Chapter 2), and pay particular attention to data flows. It must also assure that operational risk results, and their causes, are transparent and accessible. Also, that the op risk monitoring and documentation system is first class.

Quantitative standards for operational risk should be comparable to the Advanced IRB method for credit risk. They should include correlations, and show sufficient granularity. They should also have the ability to capture the tail of the distribution. Both internal and external operational risk data are important, and the same is true of scenario analysis and evaluation of control factors. Quantitative approaches must provide assurance that:

- Expected losses in op risk are appropriately funded
- Unexpected losses are modeled, and the bank provides a safety net, and
Risk mitigation, including insurance and cap on insurance, is thoroughly studied.

In the borderline between qualitative and quantitative standards for operational risk are boundary issues. For instance, cases where the boundary of op risk with credit risk and market risk is not clearly defined. Examples are:

- Credit loss aggravated by faulty documentation
- Market risk due to exposure that has not been immediately hedged.

A solution to boundary problems requires properly designed databases whose contents are enriched through steady monitoring and accurate data collection. A first class database solution is also necessary in order to develop and recognize empirical correlations.

Notes

1 This is the most important class.
5 Chorafas, Stress Testing.
6 Chorafas, Stress Testing.
High frequency events, low frequency events and the Six Sigma method

8.1 Introduction

Chapter 7 has explained two of the three more advanced methods for operational risk control by the Basel Committee, which go beyond the basic and standard approaches. As the reader will recall, the loss distribution approach offers financial institutions the possibility of modeling their operational risk control based on their own loss data, under the supervision of the regulators.

The difference between loss distribution and those operational risk control approaches that lie lower in the food chain is that the former can allow many degrees of freedom on which a bank can capitalize. This issue of degrees of freedom provides a common ground between loss distribution and the scoreboard. This chapter explains a methodology and tools that can help in constructing a scoreboard eigenmodel beyond the matrix of loss distribution. The method I am advancing rests on two pillars:

1 A distinction between high frequency op risk events and low frequency events, which is necessary for planning purposes.

High frequency and low frequency events belong to different loss distributions. The way to bet is that high frequency operational risks tend to be low impact, though exceptions are always possible. The opposite is true of low frequency operational risk events. This chapter distinguishes between:

- High frequency/low impact (HF/LI) events, and
- Low frequency/high impact (LF/HI) events.

As Annette C. Austin, of ABN-Amro, told me: ‘It is more easy to identify HF/LI events, than LF/HI events. Unexpected risks are usually the result of LF/HI events.’ Austin also added that even for the same bank the pattern of HF/LI, LF/HI is not the same in all countries.

ABN-Amro operates in 48 countries. A pattern that prevails in the UK is not the same as that which characterizes operational risk in Romania. The principle with analytical studies is that the deeper we go in terms of focus and detail, the more careful we must be in regard to the frequencies and values assumed by the different factors we wish to control.

Let me add that HF/LI, LF/HI is a very recent classification which permits a more efficient way of attacking operational risk in its roots. It also provides means for
controlling each distinct class of op risk events, and leads the user towards a methodology that might also be applicable with credit risk and market risk.

2 An efficient, statistics-based control method known as Six Sigma, which enables weakness in management control to be identified and redressed.

Six Sigma is above all a discipline, which has been successful if and when top management stands solidly behind it. This is the case study we will follow in sections 8.6 and 8.7. Taken individually, the tools included in Six Sigma are not new. What is new is their integration into a methodology that is used by the CEO and senior management to assure that they are in charge of operational risks.

Let me also add, in connection to the theme of this chapter and of Chapter 9, that the line dividing the scoreboard from loss distribution approach is not rigid. The difference largely lies in the methodology that is adopted and the tools used to obtain a more sophisticated solution, including:

- The frequencies associated to op risk loss events, and
- The necessary disciplinary action for operational risk control.

This chapter shows the method, describes the tools, and brings to the reader’s attention the importance of discovery and its deliverables contrasted to the beaten path. Chapter 9 will present different applications, both less sophisticated, like templates, and more advanced. It will do so, most particularly, from the viewpoint of the contribution scoreboards might make to market discipline.

8.2 Understanding the concepts of high frequency and low frequency events

Figure 8.1 presents the pattern of a normal distribution. True enough, this is an approximation of events which happen in real life, where distributions may be skew, leptokurtotic, platokurtotic, chi-square, or have other characteristics like lognormal, Poisson, and so on. But even if it is an approximation, the normal distribution is widely used in finance, manufacturing, merchandising and scientific studies because:

- It constitutes a standard frame of reference, and
- It is endowed with rich tables enabling the analyst to make a great many tests.

To use a normal distribution we need metrics, or momenta. The first momentum of a normal distribution is the mean, identified by \(\bar{x} \) when we talk of a sample, and by \(\mu \) in case of the mean of a population. The former is called a statistic; the latter is known as a parameter. The second momentum is the variance \(\nu \). The very often used standard deviation is the square root of the variance.

- \(s \) is employed to indicate the standard deviation of a sample.
- \(\sigma \) is the symbol of the standard deviation of a population.
The third momentum of a distribution is its skewness. The test for a skew distribution is that its mean and its mode do not coincide. The mode is the highest frequency in a distribution. Another statistic is the median: to the left and to the right of the median lie an equal number of measurements, or points. Still another statistic is the mid-range, half way between the highest and lowest measurement in a distribution.

In a normal, bell-shaped distribution, the mean, mode, median, and (theoretically only) mid-range are equal. This is not true of a skew distribution. The fourth momentum is its kurtosis. We will not be concerned in this text with skewness and kurtosis, though as experience is gained with high frequency and low frequency operational risk events they might become important metrics.\footnote{1}

The concept to retain from Figure 8.1 is the probability of events falling within 1, 2, and 3 standard deviations. Table 8.1 gives the probabilities associated to one-tailed and two-tailed distributions. We talk of two-tailed distributions when all extreme values, say beyond 3s – the outliers – are, for any reason, considered to be pertinent to the study or the test which we do.

This is not always the case. Often we are interested in extreme events represented only by the largest (or smallest) values in a distribution. In this case we are dealing with a one-tailed distribution. With value at risk (VAR), for example, the regulatory 99% level of confidence represents maximum amount of losses corresponding to a one-tailed normal distribution.

Taking into account the prevailing frequencies, it is evident that all operational risk events falling within $\bar{x} \pm 1s$ are high frequency compared to those towards the tails of the distribution. The same is true, albeit to a lesser degree, of events falling between $\bar{x} \pm 1s$ and $\bar{x} \pm 2s$. Beyond this, the frequency of operational risk events decreases, though when we talk of outliers we typically make reference to events which are:

- Beyond $\bar{x} \pm 3s$
- Or, even more so, beyond $\bar{x} \pm 5s$
With two-tailed distribution

<table>
<thead>
<tr>
<th>Expression</th>
<th>Area under the curve</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\bar{x} \pm 1s$</td>
<td>68.27%</td>
</tr>
<tr>
<td>$\bar{x} \pm 2s$</td>
<td>95.45%</td>
</tr>
<tr>
<td>$\bar{x} \pm 3s$</td>
<td>99.73%</td>
</tr>
</tbody>
</table>

Also with two-tailed distribution

<table>
<thead>
<tr>
<th>Expression</th>
<th>Area under the curve</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\bar{x} \pm 1.96s$</td>
<td>95%</td>
</tr>
<tr>
<td>$\bar{x} \pm 2.60s$</td>
<td>99%</td>
</tr>
</tbody>
</table>

But with one-tailed distribution

<table>
<thead>
<tr>
<th>Expression</th>
<th>Area under the curve</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\bar{x} + 1.65s$</td>
<td>95%</td>
</tr>
<tr>
<td>$\bar{x} + 2.34s$</td>
<td>99%</td>
</tr>
</tbody>
</table>

The same statistics prevail with $\bar{x} - 1.65s$ and $\bar{x} - 2.34s$

<table>
<thead>
<tr>
<th>Table 8.1</th>
<th>Area under the normal distribution curve for a given number of standard deviations</th>
</tr>
</thead>
</table>

These outliers are very low frequency events, though somewhere out in the tail(s) there may be spikes of higher frequency (see Figure 6.4). The way to bet is that an operational event which is an outlier will, most likely, be of high impact. This lies behind the distinction made in the Introduction between:

- HF/LI, and
- LF/HI.

Outliers are not the only low frequency events fitting the above reference. Any operational risk with frequency beyond $\bar{x} \pm 1.96s$ for the two-tailed distribution; and $\bar{x} + 1.65s$ for the one-tailed distribution (or, correspondingly $\bar{x} - 1.65s$) is low frequency. Extreme events, however, are a special class to be watched very carefully.

Operational risk events, whether high frequency or low frequency, take place at any moment in the cycle of financial operations. An example of very frequent daily transactions with operational risk information is presented in Figure 8.2. ‘In their sundry losses account, banks have extensive information on high frequency/low impact op risks,’ according to Brandon Davies of Barclays Bank. These come from:

- Fraud,
- Errors in execution, and
- Other issues.

This op risk information is fairly well documented as it piggy-backs on other data, like accounting. It is also nearly free of cost. The challenge is to classify the operational risks embedded in it, and sort out sundry losses by class. More difficult to come by is information on low frequency/high impact operational risk events.
The ability to handle statistically LF/Hi items and their pattern is limited by lack of data. Hence the need for data analysis over several decades in conjunction with extreme value theory. We are not yet there, because the content of our databases is not what it should be, as explained in Chapter 7. And as Austin (above) has suggested, it is easier to identify HF/LI events than LF/Hi events (see the Introduction).

As work along the HF/LI and LF/Hi starts gaining momentum, the databases get richer, and experience on the analytics of operational risk accumulates, we will be confronted with a different type of challenges. The more astute analysts will want to know why, typically, operational risk losses are non-linear in terms of:

- Size
- Frequency, and
- Severity.

Figure 8.2 Intraday operations are always exposed to high frequency or low frequency operational risk events
These will become very interesting studies giving the financial institutions that undertake them a competitive edge. For the time being, however, the priority is to establish a firm basis for data collection and for frequency-and-impact studies which permit analysis of real life events, like operational risk, by means of increasingly more powerful mathematical tools. This brings into the picture the issue of system design, which is the subject of section 8.4.

8.3 Characteristics of high frequency and low frequency events

As was explained in the previous section, some operational risks have high frequency but low impact (HF/LI). Others have low probabilities but potentially large financial impact (LF/HI). Examples of high impact are major errors and omissions, fraud in high value transactions, physical loss of securities, bankruptcy of IT supplier or outsourcer, and so on.

Some high impact operational risk events are extremely difficult to predict. An example is *Andersen Risk*, or the risk of deception. Because of risk migration and the specific nature of auditing, balance sheet evaluation and analysis may become highly unreliable. Conflicts of interest may make matters worse. Either case brings into perspective the risk of deception, which can have one or more origins:

- Incompetence
- Repeated errors
- Lack of information
- Lack of transparency, and
- Outright conflict of interest.

The Basel Committee advises that increased automation has transformed relatively low impact operational risk events to high impact events. The interruption of business processes because of an extended disruption of services is an example (see Chapter 5

![Figure 8.3](Image)

Figure 8.3 High frequency events and low frequency events are at the two ends of the distribution of operational risk
High frequency events, low frequency events and the Six Sigma method

169

and Chapter 14). High frequency operational risk events, and those of low frequency,
find themselves at the two ends of the distribution, in terms of impact, as shown in
Figure 8.3.

With regard to frequency characteristics of operational risk events mentioned in
section 8.2, the discussion on the normal distribution has documented that high
frequency events occur within ±2 standard deviations from the mean. Low frequency
events occur at the tails, or as outliers. Spot operational risk is typically of high
frequency type. It occurs and it is recognized within a 1- to 5-day period. According
to some estimates,

- Spot events represent between 75% and 95% of the operational risk database.
- Such events can be empirically observed, and they can be tracked with short time
 lag.
- By contrast, low frequency op risks require a methodology for experimental
 analysis, as well as long-term observation and tracking.

Usually, though not always, low frequency events are forward operational risks. They
often consist of residual high frequency events that went undetected, and grew
over time. Sometimes the lead time to their painful discovery is quite long. Low
frequency operational risk at Daiwa Bank (in its US operations), Sumitomo (the
copper scandal), and Showa Shell took between 10 and 12 years to reach catastrophic
proportions.

The Daiwa Bank, Barings and other similar examples suggest that it is wise to
always remember that a high frequency, low impact event can become low frequency,
high impact events over time. Nick Leeson’s operational risk started with relatively
minor misdemeanors but grew fast over 2 years. Improving an operational risk
control system means looking proactively to minimize unexpected events, and the
impact associated to them. The rule is that:

- The older is the error,
- The larger its potential impact and result.

Low frequency/high impact op risks, like trader malfeasance, might be externalized
through innovative insurance policies with prompt pay-out features (see Part 3). This
essentially means exchanging operational risk with credit risk. Alternatively, some
years ago a French bank was saying that its policy was to keep in its safe the passports
of its forex dealers.

It is better to be proactive and establish a system of forward-looking controls.
However, low frequency operational risk problems have been addressed more in
appearance than in fact. Particularly scant attention has been paid to their impact. To
distinguish between high impact and low impact we must ask:

- What’s the product?
- What’s the process?
- What’s its specific nature?
- What’s its operational risk(s)?
- What’s the frequency of this op risk (or risks)?
- What’s their impact when they happen?
Timely corrective action is a critical variable. Typically, the cost is lower if the error is caught in time, particularly when the potential for damage is higher. That is why the preceding paragraphs have emphasized that the best strategy is that of projecting forward on operational risk. This requires:

- Establishing the time horizon
- Defining the set of market parameters
- Examining the distribution of likely low frequency op risks
- Examining the distribution of high frequency op risks, and
- Having an effective mechanism for corrective action.

Can this be part of the scoreboard solution? The answer is: ‘Yes!’; that’s why I have included these two lists of bullet points. Though the exact definition of scoreboard has not been given by Basel, it is only normal to expect that the very interesting HF/LI, LF/HI approach needs a framework for its implementation – as well as control action, provided by Six Sigma (see sections 8.6 and 8.7 below).

Once the framework is in place, we can enrich it with analytics: for instance, calculating the effects of volatility in operational risk events within our enterprise and in its business environment. Equally important is to estimate, over time, the amount of operational risk events which are captured versus those that escape immediate attention and are discovered later on.

Both the frequency and the importance of transaction being executed, in money terms, influence the definition of low impact and high impact. Other factors, too, contribute in creating a system in which improvements in operational risk control can be effected by acting proactively to minimize unexpected losses from operational risk. Taking all these factors and risk characteristics into account, over a period of time we can create an operational risk profile, by type which has been classified and identified (see Chapter 2). Our goal should be:

- To approach operational risk recognition with nearly 100% certainty, and
- Apply statistical quality control charts to map the behavior of each identified op risk (more on this later).

In conclusion, the implementation of Basel’s AMA methods, particularly loss distribution and scoreboard should be the pivot point for change in past practices where, to a large extent, operational risk problems have been addressed more in appearance than in fact. A documented analytical approach to operational risk control requires a thorough framework within which it will be exercised, as well as experimentation, including appropriate system design, as the following section documents.

8.4 Experimentation and system design for operational risk control

An experimental approach to operational risk control is not just the better alternative when we are faced with unknown factors. It is the only way. Indeed, this is a basic
High frequency events, low frequency events and the Six Sigma method

Table 8.2 A classification of operational risks by severity and tolerance

<table>
<thead>
<tr>
<th>Status</th>
<th>Severity</th>
<th>Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catastrophic</td>
<td>Very high impact</td>
<td>Zero</td>
</tr>
<tr>
<td>Major</td>
<td>High impact</td>
<td>Extremely low</td>
</tr>
<tr>
<td>Minor</td>
<td>Low impact</td>
<td>Expressed through template¹</td>
</tr>
</tbody>
</table>

¹ See Chapter 9.

principle in all scientific disciplines. Operational risk control is an issue that can benefit greatly from involving both system design and thorough testing. Given that data is the No. 1 challenge, among the critical questions to be answered are:

- How reasonable do the numbers look?
- Can they stand comparison to real-life results?
- Which sort of system design is meaningful in the longer term?

Borrowing a leaf from science’s book,² experimentation is an indivisible part of any sound methodology aimed at controlling operational risk. Experimental design and testing help us to be comfortable with the solution that we choose.

A major step in the experimental approach is the classification and identification of operational risks (discussed in Chapter 2) followed by the distribution of operational risks in terms of frequency and impact. All risks must be classified in terms of severity, financial impact, and tolerance. Table 8.2 provides an example. Tolerances must be specific by specialized functions such as:

- Legal
- Compliance, and
- Security.

Cross-function coordination should provide an enterprise-wide pattern. Thresholds that make operational risks change status are very important, and they should be clearly defined. An example of thresholds in terms of frequency and impact is provided in Figure 8.4.

Minute, detailed work along the notions outlined in the preceding paragraphs is the methodology applied to code cracking in military operations, to read the enemy’s secret messages and information exchanges. Superior intelligence, however, has prerequisites. A control system must be characterized by simplicity, cost-effectiveness, and flexibility. All three require:

- Clear objectives
- Qualitative and quantitative approaches to evaluation, and
- The ability to compare alternatives and reach decisions.

Whether the operational risk control project focuses on high impact and low impact risks, or any other subject, a mature designer will take only small steps while
he investigates different possibilities. He will not implement a solution before making
a prototype, obtaining results through testing, and examining gaps or inconsistencies.
Systems designers who are worth their salt are:

■ Open to compromise on the detail,
■ But they would never compromise on the principle.

One of the principles in engineering design is focus. An operational risk model
projected for a scoreboard solution must be focused in its design. Apart from the need
for database support and algorithmic fitness, a great deal depends on answers to
queries such as:

■ Who will use the model?
■ Under which conditions?
■ How accurate should it be?
■ Which type of test is appropriate?
■ Does the chosen level of confidence make sense?

If one were to sum up these five points in one sentence, this would read: Does the
model and its results inspire confidence? Factual answers are important because the
model output alone may not be convincing to the user – or the organization. The
discipline and methodology of engineering design is the higher level reference.

In the 1980s and 1990s, when I was consultant to the board of the Union Bank of
Switzerland, the bank had 35 computer-aided design (CAD) units in operation. Some
of them were used for network design and maintenance. Others were implemented to
automate office layout. During that same timeframe, in Tokyo, Nikko Securities was
using CAD to design new financial instruments, and follow-up on them.
The use of engineering methods and tools in banking has given commendable results. Since the early 1980s Bankers Trust was talking about bank engineering. Once the discipline of engineering is admitted as being not only applicable but also desirable in a banking environment, system design becomes a culture – with plenty of benefits.

Let’s also keep in mind that since 1996, with the Market Risk Amendment, the level of confidence, α, has become a stable issue in banking. This is an engineering tool widely used during World War II with the Manhattan Project, to promote high quality.

Figure 8.5 provides a bird’s-eye view of the meaning of α, the confidence level. Operating characteristics (OC) curves, like the one in Figure 8.5, have been extensively used with the manufacturing of the atomic bomb as well as in aerospace projects. Originally implemented in the manufacturing industry, they assisted in defining the probability of acceptance of man-made goods by bringing into focus

- Producer’s risk, the α, also known as Type I error, and
- Consumer’s risk, β, the Type II error.

Notice that in an operating characteristics curve, consumer’s risk, β, should not to be confused with volatility. The sense of it is that in spite of an inspection plan supposed to reject lots of lower quality than an established quality standard, some of them may filter through. An example from banking would be giving a loan to a party who would not qualify for it, because of nepotism, unreliable credit references, or other reasons.

By contrast, the producer's risk α corresponds to rejecting a lot that should have been accepted because of its quality characteristics. Translating into a credit institution’s environment, this would mean rejecting a loan application that should

![Figure 8.5 The operating characteristics (OC) curve of a statistical distribution](image-url)
have been accepted. I had a professor of banking at UCLA who taught his students that a loans officer who rejects too many loan requests is as bad as one who is really poor in screening the loans.

In banking, operating characteristics curves have been employed with the risk adjusted returns on capital (RAROC) model, of the late 1980s, as well as with expert systems developed and used by the financial industry at around the same timeframe. Let’s recall that the 1996 Market Risk Amendment by the Basel Committee stipulated that the level of confidence should be equal to 99%. As can be seen in Figure 8.5:

- An $\alpha = 0.10$ (which corresponds to 90%) would give an estimate of value at risk (VAR) much less than an $\alpha = 0.01$.
- The $\alpha = 0.10$ (Point B), however, will leave 10% of all cases out of this VAR measure, while with $\alpha = 0.01$ (Point A) the exception to computed VAR will be 1%.

All these concepts, though not the VAR model itself, are fully applicable with high frequency/low impact and low frequency/high impact operational risks – that’s why I present them in this section. Supervisory authorities of G-10 countries look favorably to the development and use of operational risk models. As the directives coming out of Basel indicate, they believe that models should be developed for better management of operational risks – and they should enable a quantitative appreciation of risk by senior executives, and at board level.

8.5 Tools most useful in the analysis of operational risks

Like statistical quality control charts (see the following section), operational risk models can be instrumental in promoting internal control. The way the European Central Bank phrased its current policy: ‘Measurement units and control procedures are two of the challenges lying ahead.’ The pillars of measurement units are metrics and datastreams. Both must be reliable and this requires aggregating and consolidating data collection systems across business lines, while appreciating that business lines are not watertight in terms of information flows. Other requirements include:

- Mapping business lines to risk-oriented regulatory definitions
- Differentiating between risks which are HF/LI and those LF/HI
- Projecting on how operational risk information will be interpreted by stakeholders, regulators, and credit rating agencies.

A prerequisite for effective op risk measurements is to analyse how to track progress towards uniform, comprehensive, and accurate measurement standards. Another prerequisite to operational risk analytics is the understanding, appreciation, and use of the appropriate tools. The following is a list of ten tools that I have found to be the most important for operational risk analysis and control – and therefore strongly advise they are used with the scoreboard method:

- **Statistical distributions**: starting with the normal, and proceeding with lognormal, leptokurtotic, Poisson, chi-square.
- **Classification studies** to help in identification of risks, and reflect their relative ranking through taxonomy
- **Bayesian probabilities**, leading to causal modeling, including cause and effect analysis.
- **Fuzzy engineering** to help in quantifying qualitative estimates of op risk frequency and severity.\(^3\)
- **Genetic algorithms**, which assist in developing forward-looking operational risk data as well as in optimization.\(^4\)
- **Extreme value theory** addressing maxima, minima, and the tail of operational risk distributions
- **Non-linearities**, to account for changes in trends and in frame of reference of operational risks
- **Experimental design**, including Latin squares, for the study of variance, as well as the use of control groups
- **Operating characteristics curves** to analyse the pattern of producer risk and consumer risk (see the previous section).
- **Quality control charts** by attributes and by variables, to plot op risk events as they happen (more on this in the next section).

Most of these tools can make a vital contribution to the identification, monitoring, and handling of high impact and low impact events, as well as in other operational risk studies. Exception reporting also helps, but it poses the challenge of capturing and interpreting outliers residing at the distribution’s tails – therefore requiring the use of the aforementioned tools.

While accuracy of the systems and procedures we employ is only one dimension of overall performance, it is also a most crucial one to operational risk control, and a pivotal reference to the goodness of fit of end results. Therefore it requires special attention. A valid model for operational risk control will address at least five fundamental issues that arise in measuring accuracy of the system we are using:

- Defining **what** is measured, including the issue, its frequency, impact, datastream and the model which will use this data.
- Explaining **how** it must be measured, through which metrics and framework necessary to assure reliable data collection.
- Specifying **when** and **how** the data will be used to map observed HF/LI and LF/HI operational risks against limits and tolerances.
- Assuring continuity in the representation of the operational process, and the risks embedded into it, over a longer timeframe.
- Targeting corrective action aimed to assure that the operational risks we are after are steadily supervised and recorded.

Crucial to model accuracy is the type of errors being encountered and their frequency. These, and their likelihood, are best expressed through an operating characteristics curve, which has been explained above. In this and in many other projects where measurements play a most critical role in terms of accuracy and results, we typically encounter the two types of errors with which the reader is already familiar: \(\alpha \) and \(\beta \).
Enough about quantitative measurements; there are also qualitative ones. Take as an example option pricing. One of the cardinal principles in banking is that front desk and back office should be separated by a thick wall, in terms of responsibility. This is often violated through outsourcing, and its operational risk. For instance:

- Using brokers as consultants presents problems of conflicts of interest.
- Brokers have incentives to lean towards lower volatility estimates because they assist in making deals.

The price paid by NatWest Markets, the investment banking arm of National Westminster Bank, for mispricing its options is that it ceased to exist. In March 1997 the institution’s controllers found a £50 million ($77 million) gap in its accounts which eventually grew to an alleged £300 million ($460 million).

After the announcement of such huge losses it was said that at NatWest Markets: Risk management did not have good enough computer models. This might be true, but it was not the only reason. The first and foremost reason for failure in pricing by NatWest Markets was the types of errors just mentioned, which can be plotted as Type I and Type II errors in an operating characteristics curve.

Prudence in product pricing tends to lead to less Type I errors than Type II. Analytical approaches should, however, target both types of errors, making them as small as possible. Larger sample sizes, both in absolute terms and as percentage of the population under study, help. It is above all advisable to be very prudent because, other things being equal, minimizing one type of error usually increases the other type of error – which is shown both in a practical sense and through statistical theory.

A snapshot of Type I and Type II errors associated to the pricing of options – a high impact operational risk – is given in Figure 8.6. Not only third party opinions, as in

![Figure 8.6](image)

Figure 8.6 The pricing of options and op risk, Type I and Type II errors, operational risk measurements
this example on option pricing, but also strategic alliances and mergers increase operational risk. They do so because they make information less controllable as:

- They compound layers of bureaucracy, and
- Blur the company’s responsibility lines.

In conclusion, solutions to be provided to the problem of measuring and controlling operational risk must be pragmatic. Their study should benefit from the best available tools. Financial institutions should maximize their operational risk activity by enabling interactive consultation between headquarters and operating units. This enables a better understanding of the types of operational risks, their frequencies, impact, possible limits and practical implications, which will in turn make feasible more rigorous op risk-based controls.

8.6 Using Six Sigma to improve management control over operations

Six Sigma is a management control methodology whose success rests, in large measure, on the exercise of discipline. Its tools are based on mathematical statistics and control charts. As such, it is an ideal solution for scoreboard approaches.

Six Sigma achieves results by reducing subjective errors, which are very often present in the assessment of problems. Its applications domain ranges from engineering and manufacturing, to finance and accounting. For instance, in auditing, it helps auditors define a process where results are subpar and a concentrated effort must be made for improvements. Six Sigma tools help in:

- Measuring the process to determine current performance
- Analysing available information to pinpoint where things have gone wrong
- Instituting controls good enough to prevent future deviations and other mal-occurrences, and
- Improving the whole process to better its dependability and performance.

Sometimes senior management sets broader goals to be met through Six Sigma. ‘Six Sigma is about developing tomorrow’s managers,’ says 3M Chairman and CEO W. James McNerney Jr. ‘It gives them a shot to show what they can do.’ Companies should however be aware that Six Sigma is not the cure for all operational risks, neither is it waiving senior management’s accountability. If anything, it makes it more visible.

There are two different ways to explain why Six Sigma can make a major contribution in operational risk control. It has been a deliberate choice to start with statistical quality control (SQC) charts that can serve as effective op risk tracking tools, and they should be looked at as the best currently available candidate for structuring the backbone of the scoreboard method.

For starters, a statistical quality control chart can be by variables, or by attributes. An SQC chart by variables has a central tendency (the mean of means, or \bar{x}) and upper and lower control limits. In its pure form, that is, in its original development, an SQC
Operational Risk Control

chart maps the critical variable measured by means of samples taken from a production process. Each sample has a mean \bar{x}. The central tendency of the SQC chart is the mean of these means, while each successive sample may be above or below that line \bar{x}.

‘Nothing walks on a straight line,’ said Dr Werner Heisenberg, the physicist. It is therefore proper to allow for variation, but within limits. A classical SQC chart has upper and lower tolerance limits (reflecting engineering specifications) and within them upper and lower quality control limits. As long as the sample measurements keep within these limits, the process is in control.

This concept of limits applies to many financial issues as well. For instance, the price of a barrel of oil may be targeted between $20 and $26, with $23 the mean value. Other commodities, too, are subject to targets or limits. Figure 8.7 shows that in the second quarter of 2000 spot prices for natural gas have escaped their traditional trading range, as they moved rapidly upwards.

A chart showing the trading range is not quite the same as a statistical quality control chart, but it is one familiar to bankers and as far as visualization is concerned

![Figure 8.7](image)

Figure 8.7 In the second quarter of 2000 spot prices for natural gas escaped their typical range and went out of control.
the effect is nearly the same. That’s why I chose it as a first example. Other examples are closer to the original concept of SQC charts. Figure 8.8 shows a statistical quality control chart designed to track currency exchange rates.

As it will be recalled, a couple of decades ago the European Common Market had established an exchange rate mechanism (ERM) with a currency exchange target and tolerances above and below that line. The central banks involved in this agreement:

- Supported a currency falling below the lower tolerance, and
- Saw to it that no currency broke the upper tolerance by strengthening against the others in ‘the snake’ in an inordinate way.

This and similar cases regarding tolerances can be followed effectively through a statistical quality control chart. Purposely, in Figure 8.8 both upper and lower tolerances and upper and lower control limits have been plotted. Statistical theory says that if there are three points in a row, then there is high probability a fourth one will follow in the same direction. Indeed, at point P there is a bifurcation.

- If the curve had a bend upwards, the process would have been in control.
- Since it continued downwards, the currency concerned had to be immediately supported or fall out of tolerance – as happened in the early 1990s with the British pound.

Other quality control charts are by attributes. Something either happens or it does not. These are most suited to low impact op risks. They help to bring op risk control tracking to each office, desk, and individual’s level. An example is given in Figure 8.9. An extra reward from the implementation of quality control charts by variables and by attributes is the possibility of post-mortem evaluations. In my experience, post-mortems are most critical in:
Building a risk awareness culture, and
Providing consensus on operational risk control policies.

SQC charts and templates (see Chapter 9) are a support function permitting the matching of operational risks, people, and management control systems. After all, this is what operational risk control is all about.

In the following section we will follow a different approach in appreciating what can be achieved by the steady tracking of operational risk through mathematical statistics. This is an alternative and yet complementary method, and at the same time it goes to the heart of the cultural change targeted through Six Sigma.

8.7 The practical implementations of Six Sigma are convincing

Typically in business and industry, a distribution of events under measurement characterized by a large standard deviation stands for low quality. The opposite is true when the standard deviation of the distribution is small. Two normal distributions, for example, may have the same mean, but the standard deviation of the first is double that of the second. When this happens,

- The events (products, services) in the first distribution are low quality.
- Those in the second distribution are high quality compared to the first.

This can be appreciated in Figure 8.10 from a real life application at General Electric. Before Six Sigma was implemented, the expected value (\bar{x}, mean) of a distribution of goods was held at a reasonable distance from the customer’s specification, but the standard deviation was large and with 3σ ($3s$ would have been more accurate) there
was 6.6% incidence of defects – that is, items that did not meet the specification, which can be seen as the tolerance in Figure 8.8.

Six Sigma, the methodology, changed all that. Quality improved greatly, and the standard deviation was halved. As a result, Six Sigma (6σ) separated the expected value – which in fact did not change – from the customer specification. There were no more defects. One might ask why accept the variation in the first place? The simple and straight-forward answer is: Because that’s how natural and man-made systems behave.

- There are always tolerances, and
- There is in every case variation, even in the most tightly controlled processes.

Six Sigma’s underlying control principles are much more general than the operational risk perspective, and its implementation gets increasingly enriched with mathematical and statistical tools. An example is General Electric’s approach to quality control, not only in regard to the company’s manufacturing divisions, but also at GE Capital.

GE Capital Six Sigma applications focus on financial services. A steady, unrelenting transition towards financial services has changed GE from a company that in 1980 derived 85% of its revenues from the sale of manufactured products to one that today is based 70% on the sale of services.

This planned, rapid transition has extended GE’s market potential and enhanced its ability to bring value to its customers. But it has also required a deep cultural change – along with minute attention to operational risks – and Six Sigma has been instrumental in bringing both of them to life. The way GE has implemented them, the Six Sigma toolkits and methodology involve:
Statistical quality control methods
Experimental design to permit a rigorous test of hypothesis
Chi-square testing to evaluate variance between two populations
A defect measurement method based on hard data
A dashboard to map progress towards customer satisfaction (very important in banking)
A Pareto diagram which exhibits relative frequency and/or size of events
Root-cause analysis which targets original reasons for non-compliance or non-conformance
Graphical tools for process mapping and interactive visualization.

GE Capital has derived very significant benefits from the implementation of Six Sigma. Its management says that the new methodology allows it to focus on quality, cost, op risks, and other root issues. In practical terms, it helps in reducing cycle time, swamping defects, and emphasizing the value of each individual contribution. The whole approach, and its implementation in financial operations, is guided by a systematic methodology:

- Utilizing training tools, and
- Doing a steady measurement of each individual performance.

Here is one example relating to marketing and sales. Business customers told GE Capital that for them a critical quality issue was how often a salesperson could answer their questions directly, without having to look into the matter later on and getting back to them with a certain delay. Adhering to the Six Sigma data-gathering discipline, each salesperson now keeps a meticulous diary, noting each time a customer asked him/her a question, and whether he or she was able to answer it immediately. Prior to Six Sigma immediate answers took place in only 50% of all cases. Therefore the effort was to deduce:

- Which types of questions salespeople are unprepared for
- What training would fill that gap, and
- Which people were best suited to the job of salesperson.

These are operational risk type problems. Their existence documents the fact that high quality of service and cost control correlate. Through Six Sigma, GE Capital Mortgage identified the branch that best handles the flow of customer calls. Then, management used that model to redesign the process in all other branches.

As Jack Welch, former CEO of GE, who turned Six Sigma into a fundamental methodology, put it: Customers once found the mortgage corporation inaccessible nearly 24% of the time. Now they have a 99% chance of speaking to a GE person on the first try. And since 40% of their calls result in business, the return for GE is already mounting into the millions.

J.P. Morgan Chase provides another example where Six Sigma’s implementation led to commendable results. Both J.P. Morgan and Chase Manhattan were applying Six Sigma prior to their merger. After the merger, the applications got amplified. To bolster performance, the bank:
High frequency events, low frequency events and the Six Sigma method

- Implemented Six Sigma in 300 projects where the main objective was that of squeezing costs out of every operation, and
- Put several of its channels under Six Sigma scrutiny. Applications range from distributing research results to selling derivatives.

Thousands of managers at JP Morgan Chase attended ‘black belt’ and ‘green belt’ classes to learn how to slash costs while increasing sales. Prior to the merger, Douglas A. Warner, then the JP Morgan Bank CEO, said these sessions helped to save $1.1 billion in 1999.\(^8\)

The message the reader should take from these examples is that operational risk will not be controlled on its own accord. To bring it under lock and key, our culture, methodology, and tools must change. What is more the change has to be top-down with the board and the CEO:

- Taking the initiative, and
- Seeing that it seeps down the organization, to the lowest management level.

In conclusion, the methods and tools presented in this chapter are the best scoreboard solutions under today’s technology. High frequency vs low frequency operational risk events, and the high impact vs low impact distinction enhance and strengthen the loss distribution approach, bringing it to a higher level of sophistication.

System design is necessary to provide the appropriate infrastructure. Statistical quality control and a broad range of other Six Sigma tools, particularly those targeting the control of defects\(^9\), are the pillars of a methodology which ensures that senior management is in charge of operational risks.

Notes

9 Market discipline, contrary opinion and scoreboard solutions

9.1 Introduction

'News,' said Lord Thompson, 'is what someone didn’t want printed. The rest is advertising.' A prime mission, and responsibility, of the scoreboard approach should be to publish the operational risk news, the more so as there are no clear rules yet written for operational risk control – something comparable to the Code of Hammurabi for credit risk, published 3700 years ago.

Not only is the 'Code' missing, but also the regulation of, and capital allocation for, operational risk is very recent. It does not have roots. Chapter 1 has explained how it arose in 1999 and, by all likelihood, will be implemented in 2006. But Chapter 1 also brought to the reader’s attention that the new capital adequacy framework by the Basel Committee rests on three pillars – and all three of them are important. Pillar 3 is market discipline.

To promote market discipline, banks must be transparent, avoid creative accounting, and have well-documented reserves. This applies to all three main exposures: credit risk, market risk, and operational risk. Transparency assures that the market is the criter; it also requires that the board and CEO provide regular public attestations as to:

- The soundness of the bank and of its assets
- The robustness of its systems, including management and information technology
- The existence of rigorous internal control, and
- Its ongoing exposure to credit, market, and operational risk.

It is beyond question that there must be strategic reserves to face imbalances in the banking book and trading book. The challenge is to provide the evidence about such reserves. To a large measure what Chapter 8 has outlined in connection to a sophisticated scoreboard – from high frequency/low frequency events to the implementation of Six Sigma – goes beyond capital allocation per se and has to do with market discipline.

Another important, but not thoroughly appreciated element, in market discipline and in operational risk control, is a culture permitting the development of dissent within the organization. Contrary opinion can be of great help in identifying and tracking credit risk, market risk, and operational risk. By contrast, a monolithic management culture is exposed to all types of risk. Dissent forces management to:
Consider alternatives to op risk control
Experiment with options, and
Examine proactively results expected down the line.

The great leaders of industry have always encouraged diversity of opinion. They have promoted conflicting views among their immediate subordinates – and have wanted to see a dialog between different viewpoints, and therefore between conflicting judgments.

Effective decisions are not made by acclamation, and this is equally true of optimization of operational risk controls. Therefore, a scoreboard solution worth its salt should promote diversity of opinions up to the moment a decision is made on corrective action. It should establish criteria of relevance and define boundary conditions, but it should not lead to tunnel vision in operational risk control.

9.2 The Basel Committee on scoreboards and market discipline

According to a paper published by the Basel Committee in mid-2002, scoreboards provide means of translating qualitative assessments into quantitative metrics.¹ I would consider fuzzy engineering and the Delphi method as first class tools to do just that.² Basel advises the establishment of metrics that must give a relative ranking to different types of operational risk exposure. To be in charge of their operations risks banks should:

Be productive in identifying indicators that may be predictive of future losses.
Use as risk indicators statistics providing insight into the bank’s risk position (the loss distribution being an example), and
Establish thresholds and limits tied to risk indicators, alerting management to potential problem areas through steady tracking and visualization (see Chapter 8 on SQC charts).

Scoreboards, the Basel Committee says, may also be used to allocate economic capital to each business line. This can evidently be done with the standard approach (see Chapter 6) but only in a summary fashion, by pre-established groups of banking channels. Both the much greater detail and the duality of qualitative and quantitative characteristics should become available at scoreboard level.

Figure 9.1 provides a snapshot of what has been stated in the preceding paragraph, with an added reference to post-mortem verification. Borrowing a leaf from other regulatory disclosure requirements, such as credit risk, the following five points describe disclosures necessary for market discipline:³

Past operational risks and their frequency
Impact of each of these operational risk types
Specific and general allowances made for control reasons
Types of statistical methods used for quantitative disclosures
Types of statistical methods used for qualitative disclosures.
According to the new Basel directives, qualitative disclosures should be taken very seriously. All national regulators have the authority to conduct administrative proceedings that can result in censure, fines, issuance of cease-and-desist orders, suspension or expulsion of the bank or broker, its directors, officers, and employees. Correspondingly, also on the basis of extrapolation from Basel directives that focus on credit risk, quantitative disclosures for market discipline should be broken down by:

- Aggregate amount of operational risk exposure
- Specific types of operational risk exposure
- Geographical distribution of such exposure
- Industry/counterparty distribution of op risks including appropriate analyses.

An integral part of this quantitative evaluation is allowances for operational risk losses, recoveries, charge-offs, exposure covered by insurance contracts on-balance sheet, exposure covered through derivatives off-balance sheet, possible risk transfer through securitization similar to credit derivatives, identification of operational risk control enhancements and results being obtained.

All this is most pertinent to scoreboard solutions, because the majority of the issues outlined in the preceding paragraph are applicable only in connection to AMA. An example is the use of insurance as an operational risk mitigant. According to the Basel Committee, recognition of insurance instead of capital reserves for certain operational risks should be limited to those banks that use advanced measurement approaches.\(^4\)
Market discipline, contrary opinion and scoreboard solutions

A scoreboard solution without embedded rules for post-mortems, as Figure 9.1 has suggested, would prove in the longer run to be substandard. We should always be ready to compare actual data with projections made on operational risks regarding frequency and impact, as well as to rethink our analysis of outliers. Not only are post-mortems crucial, but also the financial institution must make the results of operational risk post-mortems available:

- Externally to shareholders, and
- Internally to the jobholders.

That’s market discipline. A good example here is the fact that more and more companies are undertaking to give their employees the same financial reports that they give their stockholders. One corporation, for example, has emphasized its annual ‘Jobholders Meeting’ in which management appears before the entire workforce and gives an account of its stewardship for the past year. Whether oral or written, such reports accomplish two results.

- They acknowledge the participation of the workforce in the enterprise, thereby enhancing their sense of dignity, and
- They convey an open, undistorted picture of the affairs of the institution and the problems it is facing, as well as its successes.

A basic notion that should become part of common consciousness is that no economy will produce the maximum benefits without an adequate system of incentives and rewards for all participants, and without market discipline. Key to both is accurate and dependable information – a reason why it is disquieting to see the fast rising number of proforma statements shown in Figure 9.2, which are themselves a sort of creative accounting with plenty of operational risk.

Regulators are trying to codify some norms for operational risk identification and reporting. In the UK the Financial Services Authority (FSA) has prepared an integrated prudential sourcebook which contains guidelines on op risks as contrasted to strict rules. Its implementation is projected for 1 January 2004. The contents include:

- Outsourcing
- Human resources
- Information technology
- Change management, and
- Business continuity.

A scoreboard’s system design (see Chapter 8) should take full account of norms developed through such initiatives, even if their status is still that of guidelines. Beyond that, the design of a scoreboard should provide hard evidence on deliverables, accounting for the fact that internal and external auditors are the parties directly responsible for reports enhancing market discipline.
Some regulators like the Fed, OCC, and FDIC, have their own examiners. Others, like the FSA, are not resourced to do this, and they depend on the audit by chartered accountants.

In connection to this last point, there is a question of crossborder consistency. This, too, should be reflected in, and compensated by, the design of the scoreboard. To contribute to Pillar 3, external auditors must themselves be disciplined and they should use a normalized form of reporting on operational risk capital allocation by the entities they audit.

9.3 The use of templates with scoreboards

Reference has been made in Chapter 8 to the fact that there is no industry standard on what constitutes a scoreboard approach. Usually reference is made to a top-down method, which has a sound quantification basis, and for which historical data and datamining are very important. But the term scoreboard is not new. In the manufacturing industry it has been used for years to identify a methodology based on templates, able to:

- Capture the profile of a process output, and
- Represent the fitness of this production process within certain norms.

Scoreboards, in a template sense, are not terribly sophisticated, but they have been extensively used in risk control. They are essentially a system of mapping and

Figure 9.2 The growing number of company financial reports that contain proforma earnings. (*Source:* BIS, 72nd Annual Report, Basel, 2002)
assessment, which is easy to follow by production floor workers. In this sense, which fits well in an office environment in the financial industry, scoreboards could be distinguished into two groups:

- Lower end, and
- Higher end.

At the lower end, the scoreboard is a template, or family of templates, providing guidance on what falls within the norm(s). As such, it permits structuring of the control process regarding each specific operational risk. Its use should help to ensure that every office worker understands the error pattern, and each executive can immediately make a judgment.

An example from personal experience is given in Figure 9.3. It comes from the restructuring of warehousing operations with the objective of reducing the error rate in the expedition of lamps. In June, prior to the introduction of the new identification method, the error rate was high in all three warehouses: A, B, and C. But in three subsequent months, September, October, November, the error rate dropped significantly in warehouses A and B, where the new lamp identification method was introduced.5

- The average of results obtained in warehouses A and B became a template.
- The other 20 warehouses in which the new ID method was subsequently introduced had to perform, in terms of error reduction, as this template indicated or better.

As this example demonstrates, the objective of a template is that of fostering a consistent style of operational risk control for all departments and business units. The effective use of templates requires appreciating the risk impact of the events whose pattern is compared to that of the template acting as a control device. In simple, graphical terms, the template indicates:

- What is measured, and
- What is the acceptable/unacceptable op risk information.

What falls within the boundaries of the template (average error rate of A+B warehouses) is admissible in op risk control terms. What falls outside is not acceptable. The principle is that when control levels are standardized it is possible to overcome data incompatibility and provide for reconciliation within the operational system targeted by the template. Other uses of templates are:

- Building risk awareness culture, and
- Providing consensus on op risk policies.

It can be reasonably expected that the use of templates will increase as a result of continuing research by banks and professional organizations in principles, techniques, disclosure requirements, and visual presentation or operational risk information. Eventually, it might involve experimentation with forms of op risk statements that
Figure 9.3 Hunting down the error sources and improving the system’s accuracy

emphasize the reduction in the amount of exposure, and/or show the relationship of the individual worker to the operational risk profile of the company employing him or her.

Averages, trend lines, and histograms are the strength of templates. They help as a support function that reflects the profile of operational risks, the action of people, and the fitness of procedures within the perspective of a control system. Graphical presentation through templates is better than the so-called ‘near misses’ promoted by
Market discipline, contrary opinion and scoreboard solutions

![Figure 9.4](image)

Figure 9.4 The establishment of early warning indicators is more complex with near misses

some national supervisors who still need to provide further guidance on this matter:

- What really constitutes a near miss?
- How do we quantify a near miss in practical terms?
- Should we establish a three-value control system: go/may be/no go, like the one shown in Figure 9.4?
- How can we motivate people to identify near misses?
- How do we integrate near misses into enterprise-wide operational risk management?

Another example of easy to understand and use templates are operating characteristics curves identifying acceptable α and β for each sampling plan. An operating characteristics curve is a high-end template – as discussed in Chapter 8. Though that presentation used only one operating characteristics curve, we can also have a family of them on the same template.

If we are able to determine capital charge based on loss data by business line, product or process within that line, and operational risk event, *then* we can develop and use OC curve templates for number of customer complaints, failures of account reconciliation, transaction amendments or cancellations, overrunning of limits, fraud incidents in a business unit, and so on. Operating characteristics curves are a very powerful tool indeed, which has not yet been used in the banking industry for effective and timely management control.

9.4 Developing more sophisticated scoreboard practices

Sophisticated scoreboard practices would go beyond the graphical presentation of templates, integrating with the bank’s internal control to reflect each aspect of risk management, including monitoring and evaluation. An advanced modeling system for
operational risk will have to be based on a fundamental study that addresses critical areas of management accountability in an effort to provide a comprehensive representation of op risk exposure. In order to calculate the value of each op risk control by the potential losses it guards against, this scoreboard study must:

- Require full and fast internal loss reporting
- Assure rigorous real-time data collection
- Support on-line modeling and datamining, and
- Steadily look after the validation of models.

Ideally, the fundamental study to which I refer will make it possible for the benefit of operational risk control improvements to be estimated against their costs. It will be rich in validation procedures, extend into stress testing, and pinpoint the personal responsibility of each party to operational risk events through a system of:

- Merits, and
- Demerits.

As has been made clear since Chapter 2, a thorough, well-documented classification of op risks is prerequisite to a fundamental study, not only because of the great diversity of operational risks but also for the reason that many of them tend to overlap with one another, thus making their tracking, monitoring, and control much more complex. Such a study should involve:

- Analysis of operational risk losses under normal conditions
- Worst case scenarios, including extreme events, and
- Estimation of residual risk values after a given type of control is chosen and implemented.

This implies the computation of value derived from control action plans, by measuring the efficiency of chosen control(s) against the operational risks being addressed, as well as ways and means for calculating costs vs the benefit of these controls. Contrary to standardized templates, advanced scoreboard solutions would be allocating resources on the basis of obtained benefit, and will pay great attention to whether or not benefits exceed incurred costs.

After the challenges of operational risk classification and identification are over, and management action has been outlined, cost-effectiveness of operational risk control becomes the salient problem. Because of diversity of operational risks, a thorough study of cost-effectiveness will not accept average figures, but focused estimates of:

- Risk likelihood
- Risk impact, and
- Cost of control.

Well-conducted studies will pay attention to likelihood and impact of each op risk under different scenarios, integrate actual event and loss data as they become
Market discipline, contrary opinion and scoreboard solutions available, include loss distributions, and incorporate event modeling. Take operational risk control with foreign exchange as an example. Foreign exchange trades have become commodity transactions, with:

- High notional value
- But little profit margin.

While the number of forex transactions routed through electronic platforms is growing, the bottom line from spot forex is not improving. Under this scenario, operational risks can be hard hitting. For instance:

- Inconsistency in pricing spot forex via phone and the Web has lost clients, and
- A relatively simple error such as transposing ask and bid can wipe out a month’s profit.

That is not the sort of operational risk banks want to take. Other, less potent operational risk errors, too, have to be monitored and corrected. In the late 1970s Citibank dedicated a PDP 11 minicomputer to track foreign exchange operational risks. Every customer complaint was registered in that machine, which then:

- Gave the forex department a deadline to fix the operational error, and
- Applied a system of demerits (penalties), both because of the error itself and for any subsequent delays in providing a valid solution leading to error correction.

Interest rate derivatives provide another example of an operational risk control landscape. Fixed income modeling is an art few banks really master. Inability to bootstrap a yield curve can turn into a big money loser when the bank has an interest rate swaps book to price. Notice that both the forex and the interest rate examples are perceived as being market risks, but in reality they have an important operational risk component which requires a good deal of preparation to be overcome.

Part and parcel of this preparation is the planning method credited to Jean Monnet, a former banker widely accepted as the father of the European Union. Monnet said that you don’t start planning at the beginning but at the end of the time period targeted for deliverables. Figure 9.5 makes this point: planning starts at \(t_5 \). The same figure also identifies, as an example, ten operational risks.

In each time period, \(t_1 \) to \(t_5 \) attention is paid to the op risks that require solution. Nearly all operational risks in this example show at the beginning and the end of the planning period, but they are individually distributed in the \(t_2, t_3, \) and \(t_4 \) periods of the objective timeframe. Throughout this exercise, care should be taken to account for damage control, including loss reduction, implicit in disaster recovery plans. Very helpful also is the identification of operational risk profiles and the issue of over- and under-controlled risks. A simple algorithm for operational risk self-assessment is:

Risk Impact = Probability \times Financial Damage of Events

The financial damage should not be taken as standalone. The influence of operational risk on the institution’s business line, including reputational issues, should
be paid due attention. Equally important is to assess links between different operational risk controls and the type of events for which they have been instituted. For instance, all risks affected by the:

- Same event, and
- Same type of control.

A sophisticated scoreboard solution will also target operational risk trends, and whether gradually or discontinuously, they tend to increase over time. Some operational risks have the nasty habit of repeating themselves, leading to a leptokurtotic distribution with fat tails. To study them we should simulate real life
Market discipline, contrary opinion and scoreboard solutions

events by inserting a background probability of risks occurring even when controls are effective. Equally important is to simulate control failures, including:

- Those failing only once in a while
- Those staying failed after fixing, and
- Those slowly degrading over time.

In conclusion, what we would like to achieve with an advanced scoreboard solution is a system of traffic lights – green, amber, red – which can serve in channelling the attention of operational risk controllers. As Chapter 8 has shown, statistical quality control (SQC) charts can serve as effective tracking tools. An extra reward is the possibility of post-mortem evaluations based on SQC charts, which helps significantly in maintaining a policy of operational risk control.

9.5 Extreme value theory and genetic algorithms for operational risk control

The maximum and minimum values of a function $f(x)$, where x is a variable representing a given operational risk, are termed the extreme values of that function. It is assumed that the function and its derivatives are finite and continuous at all points. A continuous function has a maximum (minimum) value at a point where the value of $f(x)$ is greater (less) than all values in the immediate neighbourhood of the point.

A basic assumption with extreme value theory is that the curve corresponding to $f(x)$ is smooth and free of discontinuities or spikes (sharp points). This is not necessarily true of all functions $f(x)$ representing operational risks. If there are spikes, extreme value theory cannot be applied; it only deals in a meaningful sense with a smooth, continuous curve with maxima and minima. What is more, the maxima or minima of $f(x)$ can occur only at a stationary point that has a horizontal tangent.

- If the tangent slopes upwards at any point, then there are larger values of $f(x)$ immediately to the right of the point.
- If the tangent slopes downwards, then there are larger values of $f(x)$ immediately to the left of the point.

Neither of these cases is possible, by definition, at a point where $f(x)$ is a maximum (or minimum). The tangent can therefore only be horizontal at a maximum or minimum point. As a result, all maximum and minimum values of a function $f(x)$ are included among (temporarily) stationary values – which is another constraint in the use of extreme value theory in operational risk studies. The upside is that extreme value theory helps to:

- Identify turning points that could cause significant losses
- Evaluate historical data in narrative form, and
- Indicate where a process can break down and/or is out of control.
There is an increasing use of extreme value theory for simulation of the tail of a normal distribution, like the one we studied in Chapter 8. Some companies have also started to use extreme value theory in conjunction with scenario assessment of material process concentrations, regarding operational risk. This is, however, often done in a way that:

- Ignores actual material process concentrations in the bank, caused by total breakdowns, and
- Does not always concentrate on very low frequency but high impact events.

Also, some extreme value theory applications fail to ascertain a priori the smoothness and continuity of $f(x)$, or whether this function truly represents the level of control of individual process. Therefore, credit institutions have been examining the deliverables of other methods. As an alternative to extreme value theory some banks are now experimenting with genetic algorithms.

Genetic algorithms (GA) are stochastic systems effectively used for a simulated process of natural selection, particularly for reasons of optimization. Based on the process of biological evolution, they derive solutions to problems by carrying out an emulated evolutionary process on a population of possible choices or outcomes.

Genetic algorithms were developed as an alternative way for tackling minima/maxima, and optimization problems generally, with large search spaces. They have the advantage that, for most problems with a large search space, a good approximation to the optimum can be satisfactory. Their concept rests on that of Darwin’s theory of evolution:

- Genetic operations between chromosomes eventually make fitter individuals more likely to survive.
- This is leading to the selection of the fittest, and the population of the species as a whole improves.

Studies involving genetic algorithms have prerequisites beyond the mathematical background briefly described in this section.⁶ We have already spoken of the need for unambiguous classification and identification of operational risk (Chapter 2). Another prerequisite is the accurate definition of risk indicators. Their choice must meet criteria such as:

- Risk sensitivity
- Relative importance
- Guide to evolutionary action.

Risk sensitivity can be tested through analysis of variance (chi-square) and correlation between risk indicators and actual loss experience. For instance, some indicators associated with reconciliation of nostro accounts have higher correlation with loss experience than others. By contrast, risk indicators like client disputes have a rather low correlation with past direct monetary losses as contrasted with the deterioration of the client relationship.
Preferably, genetic algorithms should be used with high impact risks. The process characterizing their usage can be briefly described in three steps. First, generate at random a population of solutions, known in GA jargon as a family of chromosomes. Then, create a new population from the previous one by applying genetic operators to pairs of fittest chromosomes of the earlier population. The next step (or steps) is that of repeating step No. 2, until:

- Either the fitness of the best solution has converged, or
- A specified number of generations have been produced.

The initialization of the chromosomes determines random locations in the search space for the population to start the optimization process. Emulated natural selection flushes out the chromosomes to be recombined. A so-called tournament selection determines the chromosomes with the highest ability to solve a given problem (hence, the fittest) out of a number of randomly selected chromosomes from the population.

The motor power behind tournaments is mutations and recombinations. Recombinations exchange binary items between two chosen chromosomes. This is basically a crossover. Mutations introduce a small change to the chromosome. Usually, this is applied with a very low mutation probability, with each binary location in the chromosome flipped (0 to 1, or 1 to 0) according to this probability. There is also cost function, which computes the fitness of a chromosome.

In a nutshell, these are the basic concepts with genetic algorithms. The whole process is normally run a number of times, using a random number generator. The best solution in the final generation is taken as the acceptable approximation to the optimum for that problem that can be attained. Usually, this solution is represented as a fixed length binary string: 1001110 . . . 00110. For a brief implementation example with genetic algorithms consider the values of the following sinusoidal coded in a binary string of 32 bits:

\[F(x) = x + |\sin 32x| \]

In a binary string of 32 bits, the exponent is 32. The mission is to look for maximum. The binary string is the genetic algorithm setting of a sinus function, shown in Figure 9.6. One of the key parameters in optimization through GA is population size. This is determined by the amount of binary digits in the string. The total population of a binary string can be encoded:

```
0000 . . . . 00
0000 . . . . 01
0000 . . . . 10
   .
   .
   .
1111 . . . . 10
1111 . . . . 11
```
A method for extreme value identification in connection to genetic algorithms is *hill climbing*, a term from John von Neumann's automata theory. Considering process values that progress in a continuous line, the genetic algorithm approach addresses functions that fluctuate, such as:

- Stock market values
- Credit rating systems
- Guaranteed fund approaches
- Risk and return with derivatives
- Operational risk controls.

When the value taken on by the population moves a little up or down, we talk of creeping. A rigorous optimization study will go well beyond creeping targeting minima or maxima associated to the behavior of the function under study. As has been already explained, we are not looking for perfection. By providing a good approximation, genetic algorithms are a powerful tool.

9.6 A common project on operational risk by a group of financial institutions

Within Chapter 6, reference was made to the ORX consortium on operational risk control (see section 6.5), which includes ABN-Amro, JP Morgan Chase, Deutsche Bank, BNP Paribas, Canadian Imperial Bank, and others, altogether a dozen. It also briefly described the specific aim of the project as one of establishing a methodology that helps to guarantee a level playing field across each member’s business operations by sharing database resources, enhancing handholding, and developing a common
AMA method – probably loss distribution and bottom-up approach. Eventually the benefits are expected to cover several product lines:

- Corporate (wholesale) banking
- Retail banking
- Private banking
- Asset management, and
- Investment banking.

Among areas of common interest covered by this project, attention is also given to possible causes for contagion, spreading operational risks across related business lines. An interesting case is that of a process that may start as a non-op risk exposure – for instance a market crash where everybody tries to hide their market losses – thereafter turning into a high impact operational risk.

Another source of exposure under investigation is the op risk resulting from concentration of IT resources in one location. This particular problem is not new. Since the early 1970s banks have appreciated that the concentration of IT facilities introduces operational risks. In fact, in the early 1970s the Amsterdam–Rotterdam Bank built two computer centers, one near Amsterdam, the other to the south, more than 50 km away.

Overall, senior management backs this creative effort. At BNP Paribas, for example, the chairman issued a letter bringing to the attention of every manager in the organization the need to study and control operational risk. Top management’s comprehension and support is particularly important in the case of operational risk data pooling aimed to organize a common database that preserves anonymity of the data originator. As I never tire repeating, the financial industry faces an acute need for robust and representative internal data on operational risk.

The banks of the ORX consortium have planned a historical observation period of three years. Concomitant to this goal is the ability to map losses by regulatory category, benefiting through a common regular validation of the complete operational risk measurement process. Another important aim is to establish a procedure for overriding data that, as is the case throughout the banking industry, are bound to be judgmental.

From what I have been able to learn, this is both good news and bad news associated with this common project. The good news is its concentration on the development of a rich database on operational risks, including causes and effects. This is indeed laudable. The bad news regards the model being chosen – a reincarnation of value at risk (VAR) for operational risk reasons. This is, in my judgment, is wrong:

- VAR has been written for some (not all) of the market risks.\(^7\)

In fact, VAR can handle between one-third and two-thirds of the market risks faced by a financial institution, depending on the type of its business.

- Its extension into credit risk brought with it several serious problems.

I write this not as a critique of ORX but as a contribution to its efforts. (See also section 9.7 on the devil’s advocate.)

- Such problems will be amplified by trying to fit VAR to op risks and vice versa.
Even leaving aside the many shortcomings of VAR, the undeniable fact is that models must be focused. They are not portable from one case or area of operation to another, like a sack of potatoes. Even the ability to test the hypothesis of VAR’s portability is very limited, given that among the themes correctly examined by the ORX project is the fact that there exists little historical data in relation to operational risks.

Other themes featured in this common project include how to implement an Initial Capital Attribution (ICA), and what types of forward-looking data will be necessary to synthesize ICA. For evident reasons, the issue of ways and means of allocating capital to identified operational risks is a major goal of the project. At least according to one of the participating banks, this effort is based on an advanced method that rests on two pillars:

- The loss distribution approach, which is quantitative, and
- A scoreboard solution, which is mainly qualitative.

As BNP Paribas was to suggest during a London conference organized by IIR on 10 and 11 April 2002, the end solution should account for the fact that credit institutions are managed through a return-on-economic capital framework. A modified version of the matrix used for adjusting the allocation of economic capital (see Chapter 6) is shown in Figure 9.7. This matrix links corporate internal control to the internal control of the product, channel, or business unit under investigation. Each one of the banks chooses its own multipliers, f_i ($i = 1$ to 6).

![Figure 9.7 An internal control-based matrix, which might help in economic capital allocation to operational risk](image-url)
The use of strong, medium, and weak ratings is an indicative rating.
This rating is also internal, because ratings by independent agencies do not reflect internal controls.

The inclusion of internal control characteristics in terms of a weak, medium, strong rating is, indeed, an interesting issue. Since 1999, many G-10 regulators require that certified public accountants audit the internal control system along with the bank’s books. The auditing firms resist this because, unlike their examination of the bank’s books, which is quantitative, auditing internal controls is largely qualitative – and therefore subjective. There is not enough hard evidence to back up an opinion.

With the ORX project, however, we see that a group of banks has decided to make the status of their internal control part of self-rating for capital allocation to operational risks. In fact, according to the information provided at the aforementioned London conference, this is one of the main dimensions of the chosen approach. The ratings-based matrix used by this common project correlates two factors:

- Risk Control Self Assessment (RCSA) of the adequacy of existing internal controls, and
- Key risk indicators (KRIs), such as staff turnover, staff sicknesses, unsettled trades, customer complaints, and so on.

This is an interesting approach which forces management into clarifying the current quality of the company’s internal environment. According to one of the project leaders, it promotes the use of forward-looking data. The role of the matrix advanced by this project is to help in summarizing forward-looking data in a single quantitative measure by means of an adjustment factor. This is expected to lead to the synthesis of allocation of economic capital along the loss distribution approach.

Loss severity is represented by a Poisson distribution and modeled through extreme value theory (see section 9.5). Different hypotheses concerning loss severity and loss frequency are used for:

- Expected, and
- Unexpected operational risks.

Severity and frequency modeling concentrates on both historical operational losses and potential losses. It is intended that adjustments for loss severity and loss frequency will follow the line of high frequency/low impact (HF/LI) events, and low frequency/high impact (LF/HI) events, discussed in Chapter 8.

It is also projected that adjustment factors will be specified by the business manager of the product line, in coordination with the corporate operational risk manager. The intention is to maintain operational risk measurement on the basis of a flexible combination of historical and forward-looking data, with different business lines given the flexibility to use sets of data and weights reflecting their own, true operational risk profile.

The method is interesting but it is not a foregone conclusion that it can or will fulfill another basic objective of this project: to reduce the capital reserves necessary for operational risk at the level of 20–30%. If this is achieved, it would amount to a
translation to the left of the log normal distribution curve, shown in Figure 9.8. For the time being, such translation to the left is only a hypothesis. Banks are hoping that AMA solutions for operational risk and internal ratings-based (IRB) methods for credit risk will reduce capital requirements. The keyword, until there is proof to the contrary, is ‘hoping’.

9.7 A devil’s advocate in operational risk management

Effective operational risk control must have some brilliant people assigned to the permanent doubting role of devil’s advocate. Their mission should be to challenge possibly wrong hypotheses and assumptions – like the one in the last paragraph of section 9.6, and many others.

This role of the doubter is most important in every business activity, if we wish to avoid tunnel vision. It can apply all the way from market discipline to most types of risk control. ‘I don’t believe in the single god but believe in the single devil,’ Professor Urs Birchler, of the Swiss National Bank told me, adding that: ‘Market discipline does not bring us to paradise, but can preserve us from going to hell.’

Only wise people and well-managed institutions truly appreciate Birchler’s words and therefore the need to challenge the obvious, to turn all stones in order to find where the scorpion hides. TIAA/CREF, America’s largest pension fund, is the owner of more than 1% of New York Stock Exchange value. To help itself to manage its assets, TIAA/CREF monitors 25 governance issues:

- From board independence and diversity
- To the age of directors and their potential conflicts of interest.
Some 1500 companies making up its billions in equity investment undergo this test. Those falling short under a point system devised by the fund get inspection visits regardless of market value or performance. The budget behind this effort is a very nominal $1 million a year. The benefit is great, including:

- Good-governance principles, and
- Monitoring and encouragement of companies’ management.

For the amount of assets managed by TIAA/CREF, $1 million a year is peanuts in comparison to the benefits from this close look at operational risk. But few financial institutions have taken this initiative, or have the courage to make this type of soul-searching investigation their policy.

No doubt, the job of the devil’s advocate is neither easy nor linear. Take the scoreboard we have been examining as an example. Since most methods both concentrate on qualitative opinions and reflect quantitative estimates of past events, a devil’s advocate will ask:

- How valid are these qualitative opinions? Are they based on a significant sample of experts? Are they converging or diverging?
- How reliable are the records of past events? Is the database covering at least 10 years? Is it being regularly updated? Are any errors or bias sneaking in?

A similar questioning attitude must be followed with the algorithms and heuristics chosen for operational risk control. I gave an example in section 9.6, by questioning the wisdom of employing still another reincarnation of VAR. One false step like that can invalidate a large-scale effort and its budget; and it is pity to take such a risk.

Neither is it true that better tools, like Monte Carlo simulation, will always give valid results. In a particular operational risk control project I have in mind, Monte Carlo was chosen as the method for simulation of some operational risks faced by the entity in the past years. The concept has been similar to that used with market risk. The problem is that:

- The company did not have a statistically valid internal op risk database, and
- External op risk loss databases were not found to fit or be reliable.

This is, indeed, a common downside, but the prospects improve if senior management sees this type of work as a learning process rather than as a final solution. And also if the board and the CEO appreciate the challenge of putting specific monetary values – down to dollars and pounds – on the impact of each operational risk, when it occurs.

As I had the chance to explain in the previous chapters, loss statistics help in these estimates, usually by taking account of means losses and percentiles, as well as by studying the shape of the loss distribution. But good enough percentiles, like \(\alpha = 0.01 \), and \(\alpha = 0.001 \) will tend to increase the required capital reserves for operational risks, rather than providing on a plate a cut of 20–30% on the standard op risk budget advanced by the Basel Committee.
Another major issue facing the devil’s advocate is how well senior management accepts and absorbs criticism of the ‘official line’. One of the basic reasons why companies mismanage their risks is that they don’t care to keep open their communications channels at all times. Basically, this is itself an operational risk, and a vital one for that matter.

‘What is important is to communicate even if something is simple,’ said Dr Thomas Hess, director of research of Swiss Re. ‘What is simple for us may not be so for the [product line] manager.’ Quite frequently, communications are deficient because people are afraid of being wrong, or of expressing a contrary opinion. Therefore, they communicate only:

- What they know for certain, and
- What fits with senior management thinking.

By contrast, in operational risk management uncertainties are more crucial to communicate than certainties, because uncertainties are at the origins of risk. (A similar statement is valid with credit risk and market risk.) Analytics and modeling help in communications because they are instrumental in quantifying uncertainties by means of distributions. Currently available statistical tools help in explaining:

- What is known about a distribution, and
- The level of confidence at which inference is made.

Both narrowing down a distribution, that is, ‘inference in the small’, and exploring its outliers and its extreme values, therefore ‘inference in the large’, are extremely important for senior management decisions as well as for operational risk control purposes. Failure to take both approaches has given rise to the saying: ‘The higher you are the flatter the distribution you perceive.’

Let me conclude with this thought. Lots of communications problems currently experienced by industry and finance come from the fact that the CEO is not properly challenged. He does not get a second opinion, let alone a contrary opinion, because people do not say what they really think.

Alfred Sloan, the legendary chief executive of General Motors, had a policy to handle the contrary opinion problem. When at board level everybody seemed to agree with everybody else, he adjourned the meeting and rescheduled it a fortnight later, asking that in the meantime members develop some dissent. If everybody agrees with everybody else, then there is no progress – but there is plenty of risk.

Notes

Part 3

Control of technical risk and operational risk in the insurance industry
10 The science of insurance and the notion of technical risk

10.1 Introduction

The insurance industry has been chosen as a case study for operational risk identification, measurement, and control. The cases we will study in the five chapters of Part 3 originated from a variety of experiences and they address different operational risk types. Prior to looking at operational risk in the insurance industry, however, we should take a closer look at the science of insurance, and define the meaning of technical risk, which is, in a way, the counterpart of the credit risk taken with loans.

As Dr Thomas Hess, of Swiss Re, suggested, technical risk, or insurance risk is different from credit risk, market risk, and operational risk. Banks transact credit risks as intermediaries. Insurers take technical risks as part of their ongoing business. Depending on the line of business in which they are engaged, insurance companies are confronted with a variety of technical risk types:

- Life
- Non-life (which is a whole family of insurance risks)
- Third sector
- Other – marine and so on (see Chapter 13).

Insurance companies face expected risks and unexpected risks. In the latter category is included catastrophe risk, examples being events due to severe weather conditions, earthquakes and, more recently, terrorist acts. The technical risks insurance companies take morph into credit risks in case they default. As far as the survival of an insurance firm is concerned, a great deal depends on:

- How much technical risk the company assumes on its balance sheet
- How well the board and CEO manage this risk, and
- The evolution of investment positions over a number of years.

These three criteria are at the heart of technical risk models in insurance, as well as of evaluations done by reinsurance companies for protecting themselves. Many insurance companies, and most particularly reinsurers (see section 10.7) take all technical risks together and look at a joint distribution to compute economic risk.

- Economic risk will be covered through economic capital, in a way similar to that prevailing in the banking industry.
A significant difference with insurers is that the stress of technical risk on economic capital is long term.

The merging of financial instruments and insurance changes the perspective of technical risk at the frontline of the insurance industry. One of the policies insurers borrowed from bankers is securitization. They offer investors event risk oriented securitized instruments with their value linked to natural catastrophes. Hurricane derivatives are an example of catastrophe instruments which, through the capital markets, have gone public.

By all evidence, in the coming years we can expect a lot of insurance derivatives, whose market may overtake that of credit derivatives, altering the very sense of assumed technical risk. It is quite likely, though by no means certain, that technical risk transfer, through reinsurance and capital markets, will provide the model for policies insurers offer for operational risks.

Sections 10.2 to 10.4 deal with basic notions in insurance, to provide a common frame of reference. Section 10.5 examines the assets held by insurers; section 10.6 focuses on provisions; and the theme of section 10.7 is reinsurance.

10.2 The science of insurance

Insurance is the science of the unlikely. Risk coverage is usually given for improbable events. Understanding the frequency and severity of a potential claim is a prerequisite to sound insurance coverage. Better appreciation of risks invariably means including in our calculations not just expected risks that have a pattern, but also unexpected risk and extreme events – even the impossible.

From time to time, insurers are confronted with events that they would have qualified *ex ante* as being impossible. The use of passenger airliners as flying bombs crashing into high rising towers is an example. In consequence, 11 September 2001 (9/11) has led to a rigorous test of insurance hypotheses and mechanisms, as well as testing the insurers’ adequacy of reserves and the notion of an insurer of last resort (see Chapter 14).

Is insurance a science? The answer is: ‘Why not?’ At the very least, it uses scientific tools like actuarial science (see section 10.4). It also features tolerances and limits (see Chapter 8). No science needs to be exact in order to feature tolerances and limits, yet both are scientific instruments. Insurance, and finance at large, are not exact sciences, but they are increasingly studied by means of analytics, and they apply scientific tools for risk management. It needs no explaining that insurance coverage cannot go beyond the ultimate insurable risk.

- Insurance can only operate within the limits of insurability.
- These limits are defined both by a finite insurance capacity and by other parameters.

The risks an insurance company confronts may be of a minute nature, but left unattended, they may one day balloon into something much bigger. These risks
may be transferable, but also they might not lend themselves to transfer because
the costs would be too high, or there is no market for them. Furthermore,
uncertainty might be so great as to be unmanageable and, therefore, uninsurable.

Because insurance is a business in full evolution, a projection on its future
should account for both its technical and operational risks, which are growing.
Natural and man-made catastrophes are the high end of technical risk. As their
frequency and magnitude increases, insurers have to decide whether catastrophe
risk is sustainable within the confines of their industry.

Major catastrophes include: earthquakes in California, earthquakes and tsunami
in Japan, tornadoes, hurricanes, and typhoons. These are natural catastrophes. By
contrast, 9/11, asbestos, pollution, and others are man-made catastrophes. The
pollution and asbestos claims (see Chapter 12) essentially rewrote the terms of
engagement in the insurance industry, especially those emanating from the US
because of the retroactive aspect of litigation.

When confronted with inordinate risks, insurers need a bigger party that can
assume exposure associated with extreme events. This goes beyond the classical
reinsurance processes, and therefore it leads to rethinking of the role the state
might play as a potential insurer of last resort, which is a new concept.

For instance, while some of the cost of 9/11 will be compensated through
insurance, when one or more companies are approaching the point of insolvency
the government might lift them up. After 9/11 this happened with the air transport
industry in the US; some carriers were helped by the injection of state funds but
this did not save United Airlines from bankruptcy 15 months later. The use of
taxpayers’ money raises many questions which may revamp the science of
insurance.

- Is the state a good insurer of last resort or do we need another system to
 complement current reinsurance solutions?
- How should the state, if and when acting as an insurer of last resort,
 complement the way a market functions?
- How far may state funds generate a call option, with a strike price to be set by
 the beneficiary in the form of insurance?
- Does it make sense, in a global market, for a single state to bail out companies
 with stakeholders in many different countries?

Other critical queries relate to vulnerabilities with or without acts of terrorism,
but still involving extreme events. Vulnerabilities, and their likelihood, are an
integral part of the science of insurance. They concern not only classical technical
risks but also the effects of new technologies, environmental issues, and personal
matters including longevity, accidents, retirement, unemployment, reorganization
of the welfare state, as well as the push and pull factors that come with globalization,
and are outlined in Figure 10.1.

The complexity of the pattern in Figure 10.1 is the best documentation of the
need for analytics. An analytical approach to technical exposure will start with the
classification of risks in the insurance business, using a methodology similar to that
outlined in Chapter 2 for operational risk. From there, the study will try to derive
limits to insurability. In life insurance, for example, critical factors are:
Mortality risk
Longevity risk, and
Risk-related to guarantees.

Events within these classes of risk may be classified as high frequency/low impact (HF/LI) and low frequency/high impact (LF/HI), as we have already seen in Chapter 8 in connection to operational risk in banking. A similar statement is valid in connection to critical factors in non-life insurance, such as:

- Property risk
- Casualty risk by personal line (e.g. motors), and
- Casualty risk by commercial line (the liability side)

In non-life insurance, motor-related casualties are in the majority high frequency/low impact. The exception is accumulation of problems. By contrast, commercial lines in the casualty-liability side tend to be low frequency/high impact (see also Chapter 11).

Beyond life insurance and non-life insurance comes third-sector insurance, which strictly speaking is neither life nor classical non-life. It targets personal disease, personal accident, and nursing care. This market is generally recognized as important, and it may be the only remaining lucrative market in our aging society.

As early starters, US insurers have enjoyed an almost exclusive dominance in the third-sector insurance market, which is considered to fall between life and non-life, a situation that has traditionally made market separation ambiguous. By its nature, third-sector insurance has also introduced new operational risks beyond those already known to exist in life and non-life insurance. Because they were the first to enter this line of business, American insurance firms have more experience with third-sector operational risks.

The frequency of events covered by insurance policies leads to claims. A forward approach to the computation of the aftermath of technical risk involves simulation.
Figure 10.2 shows the results of a Monte Carlo simulation of a low, medium, and high number of claims and their probability. Whether we talk of life, non-life, third sector insurance, or any other class, a basic principle in insurability is that all risk classes must be diversified. If they cannot be diversified, then they tend to go into the catastrophe category like earthquakes, which are an example of low frequency/high impact risk.

10.3 Definition of risk factors and their aftermath

Risk factors enter into the estimate of value and of the insurance premium. Therefore, the better risk factors are defined, the more protected is the insurer because it can manage technical risk in a documented and consistent way.

Risk factors should be subject to analysis and experimentation using a methodology that make underwriters comfortable in their decisions regarding insurability and the pricing of risk. In principle, insurance experts say, there is no limit to insurability for the whole industry. But there are limits for each single company because of polyvalent forms of technical risk which hit the bottom line. Examples are:

- Hurricane Betsy
- Hurricane Hugo
The Piper Alpha oil platform disaster
- The *Exxon Valdez* oil spillage

as well as other events, such as the Perrier product contamination, Canary Wharf bombing, and the Twin Towers attack in New York, which represents an estimated $40–50 billion liability for its insurers. The crucial question is how much pain insurers and reinsurers can afford. ‘Big individual (re-)insurers can absorb $1 billion to $2 billion of losses. Therefore, a $20 to $30 billion insurance loss, or even more, is insurable,’ said Dr Hess.

Typically, an insurance contract will make exceptions to insurability. Technical risks which are uninsurable are Acts of God. In its core meaning, *Act of God* is an effect of natural forces so unexpected that no human foresight or skill could reasonably anticipate it. The term also has the wider meaning of any event that could not have been prevented by reasonable care on the part of anyone; such as the case of inevitable accident(s) due to a hurricane.

The examples presented in the preceding paragraphs were technical risks from the insurer’s viewpoint. Technical risks may also be other companies’ operational risks which were insured. Examples are: Natwest Markets’ volatility smile, huge losses from Daiwa trading in New York, huge losses from UBS trading in Osaka, the Hunt-Bache cornering of the silver market, Sumitomo copper trading, BCCI money laundering activities, Kidder-Peabody failure of internal controls, Barings double books and trading in Osaka, and AIB/Allfirst failure in internal control – among others. To my knowledge none of these was insured, but this may be changing for future events.

Technical risks that have been insured, and those operational risks that might be insured in the future, are bringing up the issue of premium calculation policies and principles, including solvency margins and possible intra-group creation of capital (double gearing). Basic calculation principles established by regulators must be complied with irrespective of the method being used. This will leave out double gearing but will account for the entity’s solvency margin and financial staying power.

Usually, although because of competition not always, insurance premiums are adjusted to improve the insurance industry’s financial staying power. Competition kept insurance premiums down in 1999 and 2000 but in 2001, before 9/11, premiums were increased as the stock market’s doldrums made it necessary for insurers to shore up their balance sheets, given:

- Weak investment returns, and
- Relatively heavy losses due to technical risk.

After 9/11 the premium increases were the result of a general consciousness that some years of above-average profitability were necessary to restore the insurance industry’s financial health. The global distribution of 2000 total insurance premiums is shown in Figure 10.3. In a way, such statistics reflected both greater wealth and higher risk awareness.

Because of 9/11, insurance companies faced major claims. On 23 October 2001, Lloyd’s of London indicated that it was confronted by a gross loss of £5.4 billion
The science of insurance and the notion of technical risk

Figure 10.3 The distribution of 2000 total insurance premiums, of $2.4 trillion, reflects greater wealth and higher risk awareness. (Source: Statistics from Swiss Re, Sigma, No. 7/2001)

($8.3 billion) from the terrorist attacks in New York, labelled the most expensive event in Lloyd’s 300-year history. Net cost estimates were more than 40% above those associated with the previous biggest catastrophe, America’s Hurricane Hugo.

Lloyd’s statistics were contained in a study by Standard & Poor’s. While this study was done in collaboration between the two entities, Lloyd’s said it was too soon to comment on fears expressed by S&P that some of its reinsurance claims might prove unrecoverable, thereby increasing its net exposure.

S&P, which maintained Lloyd’s rating on credit watch with negative implications, suggested that exposure to the crisis placed a significant burden on the insurance market’s liquidity. The independent rating agency also warned of a likely increase in the above £5.4 billion estimate, suggesting that on the balance of probabilities, the 9/11 costs are more likely to rise than fall, although it was not possible to put a high watermark number on it at that stage.

The California earthquake, whose damages may run up to $2 billion, was insured by Lloyd’s and Berkshire. But even if current estimates put the 9/11 technical risk at between $40 billion and $50 billion, some experts think that eventually it may run upwards of $100 billion. Potential claims include:

- Compensation for wrongful death from relatives of those in the aircraft, and
- Compensation for injury or death from those on the ground.

Beyond this, spillover sees to it that suits could be levied against the architects, engineers, and builders for presumably faulty design and construction. As we will see in Chapter 13, mega-risk resulting not only from the event itself but also from spillover underlines the urgency of tort reform. For the purpose of this discussion, however, it is enough to bring to the reader’s attention the fact that some technical risks may well prove to be unmanageable.
The premise behind prudential limits is that when risks are properly controlled they are insurable. Yet the question still remains about their joint effect down market, particularly in the aftermath of a huge catastrophe. Dr Thomas Hess advises that a discussion on limits and on insurability should not only look at insured risk(s), but also cover the assets and liabilities side (see section 10.5), most particularly the assets risk and associated credit risk and market risk, in conjunction with the technical risk being insured. This will give an integrative pattern for risk management.

10.4 Underwriting risk in insurance and the actuaries

As sections 10.2 and 10.3 have explained, technical risk is underwriting risk assumed by insurance companies. It roughly corresponds to credit risk taken with loans, and it includes all exposures related to premiums, hence the pricing of products, and the setting of adequate technical provisions to cover claims.

The management of underwriting risks relies on actuarial calculations for pricing the risks being taken, computing the technical provisions, and mitigating risks through reinsurance (see section 10.7). Within the perspective of high frequency/low impact and low frequency/high impact events, to which reference was made in section 10.2, technical provisions are the sum of:

- Estimates of uncured and unpaid claims
- Other expenses relating to these claims
- Unearned portion of premiums received, and
- Estimates of perceived deficiencies to these premiums.

The actuary responsible for these calculations is a professional experienced in quantitative methods, including not only mathematics and statistics but also demographics. The speciality of actuaries is computing the intrinsic value of money, analyzing the financial effects of contingent events, and designing financial security solutions to face them. Insurance and pensions are examples.

Legally binding clauses are necessary to assure what an insurance contract covers and what it does not cover. It is important to notice, however, that, as Figure 10.4 illustrates, this might allow for a gap in insurance coverage. If the worst comes to the worst, only those risks explicitly stated as being covered will be honoured by the insurance.

To reach conclusions about exposure and premiums, different calculations are necessary according to insurance branch, because of differences in risk profiles. The premiums are technical provisions that must be appropriate to meet liabilities arising out of insurance contracts. Such premiums constitute the majority of liabilities on an insurance company’s balance sheet. They are:

- Nearly 80% of a life insurer’s liabilities, and
- More than 50% of a non-life insurer’s liabilities.

These are averages. The exact percentages vary between jurisdictions, insurance companies, accounting system being used, and the regulatory framework. Differences
The science of insurance and the notion of technical risk

Figure 10.4 What an insurance contract covers and what it does not cover does not add up to 100% between companies are due to their risk profiles and provisioning policies, as well as their asset management practice.

Provisions are established by actuaries not only for known, and therefore expected risks, but also for unexpected risks embedded in obligations from insurance contracts. Several jurisdictions also require special provisions to be established for events of major impact, such as earthquakes.

- Such capital can be specifically earmarked, as in the case of equalization provisions.
- Both assets and liabilities must be considered, with many factors complicating their valuation.

For instance, an insurance policy might describe multiple amounts available at various times with the premium payments occurring throughout the term of the policy. Or, benefits and their timing might vary depending upon some outside index (more on this later). Furthermore, amounts and the timing of payments may be subject to a contingent event and its severity.

The result of litigation is one of the unknowns. Courts may retrospectively impose new liabilities on insured persons or entities, causing them to claim on their insurance contracts. Insurers are often exposed to a number of changes in circumstances through otherwise unrelated insurance contracts. It is therefore important to fully appreciate the extent to which the risks of loss on outstanding contracts are correlated within a given time horizon.

Not all insurers have the same time horizon. The same is true of banks. Among credit institutions, for example, Japanese and German banks have a longer time horizon, because they have given substantial credits to industry. American and British banks have a short time horizon by choice; Italian banks have a short time horizon because the regulators say so.
Insurers are obliged by the nature of their work to have a longer time horizon. Therefore, the long term is part of the risks they are assuming.

As this example suggests, though they are both part of the financial industry, the challenges facing bankers and insurers are not the same. For instance, banks must guarantee liquidity of the market. This is not an objective of the insurance industry which, in order to survive and prosper, must concentrate on the application of sound actuarial standards.

But while in general actuarial methods and assumptions are mandated by the supervisors, in some jurisdictions policy provisions can differ. An example is the level of statutory compensation required in the event of injury caused by labor accidents. These vary from one jurisdiction to another. Accounting rules, too, tend to differ across jurisdictions, affecting the valuation of assets as well as the assumptions used in determining the amount of associated liability (see section 10.5).

At the same time, the tax laws differ by jurisdiction, which is quite significant to global insurers, because often provisions are a factor in determining a company’s tax liabilities. A similar statement is valid in regard to the incidence of contingent events, with the longer-term horizon taken by insurers impacting on their performance.

The actuarial techniques being employed must account for all of the aforementioned factors – and many more: examples are risk factors like health conditions, mortality, theft, fire. Actuarial assumptions are based on these factors, as well as on the availability and quality of data in a way similar to the references made to operational risk events in Part 2.

Though, strictly speaking, it is not an actuarial duty to look after credit risk and market risk, their impact on the insurer’s assets must be considered – particularly due to an insurance company’s longer-term horizon. Classically, insurers took credit risk by buying corporate bonds and through private placements. In part, these were risks nobody else wanted to have, but they served the purpose of insurers:

- By means of diversification, and
- Through betting on an equity basis.

The amount of equity inventoried by insurers varies significantly from one firm to the other. Conservative companies keep it between 20 and 35% of their assets, usually near to the upper level when stock market bulls run the show, and at the lower end in a bear market. Insurers seeking capital growth and betting 50% or more of their portfolio on equities often get burned, as happened in 2000–2002 with British insurance companies.

Apart from the fact that they hope to get better return through equities, insurers comment that equities have the advantage of being liquid while the liability side of their loans is rather illiquid. Ironically, this led several insurers towards credit derivatives because, as one insurer I spoke to during my research put it: ‘At least credit derivatives you can trade.’ This argument however forgets the serious risks associated with credit derivatives, and most particularly the probability of default of corporates in the pool.

In conclusion, the management of risks faced by insurance companies is a major challenge that requires technology, methodology, and tools as well as highly trained
actuaries and a firm hand at the steering wheel. Real-time data capture and interactive response to risk control issues is the only way to handle the growing amount of risk. Swiss Re, for example, knows its exposure at every hour of every day. This is necessary for the observance of limits on risk set by the board.

10.5 Assets held by insurers and their risks

Risk factors and their aftermath, as well as the assets held by the insurance firm, must be mapped into the company’s accounting system. The International Accounting Standards Board (IASB) prepares a global standard for insurance contracts, including key issues in insurance and reinsurance. Both insurers and reinsurers in the European Union follow closely IASB’s work because they are required to file in accordance with International Accounting Standards (IAS) by 2005.

IASB has split its work on insurance contracts into two phases. The first is a basic outline which will allow companies to continue preparing their accounts, as they do now, in compliance with local laws, with only a couple of exceptions. The second phase is the complete IAS standard which will probably come into force in 2006 or 2007, probably changing some of the notions brought forward in this section.

To complete this reference to accounting standards, it is necessary to note that in its late 2002 meeting the International Accounting Standards Board decided that insurance risk is risk other than financial risk, and it is significant only if there is a reasonable possibility that an event affecting the policyholder will cause an important change in the present value of the insurer’s net cash flows arising from that contract. At that same meeting, a reinsurance contract has been defined as an insurance contract issued by one insurer (the reinsurer) to indemnify another insurer (the cedant) against losses on an insurance contract issued by the cedant.

In accounting terms, according to the new regulations offsetting reinsurance assets against the related direct insurance liabilities would be prohibited. When buying reinsurance, insurers will not be able to change the basis of measurement for the liabilities, such as switching from an undiscounted to a discounted basis. On catastrophe (CAT) bonds and other risk securitizations, IASB has tentatively taken the position of viewing each issue on its merits when deciding whether a deal meets the criteria for insurance.

As they come into the mainstream of the insurance business, the new accounting rules will definitely have an impact on technical provisions and the way insurers manage their assets. Today, the largest component of an insurance company’s technical provisions is the money associated with its active policies. Frequently, these account:

- For nearly 70% of a life insurer’s liabilities, and
- Some 85% of its technical provisions – a fact which reflects the long time horizon of the business.

In terms of liabilities, most claims do not occur until some time later, and for a life insurer the ‘later’ can be ten years or more down the line. The amount and timing of future claims has, however, to be estimated in advance, and this requires statistical
methods. For this reason, in some jurisdictions these are known as \textit{mathematical provisions}.

Part of the job of the actuary is to reconcile two different distributions of liabilities and assets (more on this later), while keeping an eye on profitability. In life insurance and other long-term policies, like disability, fixed premiums are paid in a level fashion and often they are front-end loaded. By contrast, the likelihood of claims is skewed toward the end of the coverage period, which essentially amounts to \textit{prefunding}. Prefunding is less of an issue for non-life insurance because:

- These policies are typically shorter-term policies, and
- Insurance companies can increase premiums upon renewal.

Well-run life and non-life insurance have a healthy cash flow which must be invested to make possible the funding of liabilities and allow the firm a good profitability. Investment income is a support to underwriting results, which, at times and in some countries, may be negative, as shown in Table 10.1.

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Usual range of variation (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loss ratio</td>
<td>56–86</td>
</tr>
<tr>
<td>Expense ratio</td>
<td>22–36</td>
</tr>
<tr>
<td>Underwriting result 100 – (a+b)</td>
<td>4–14</td>
</tr>
<tr>
<td>Investment yield</td>
<td>3–9</td>
</tr>
<tr>
<td>Asset leverage(^a)</td>
<td>200–450</td>
</tr>
<tr>
<td>Net investment result</td>
<td>12–25</td>
</tr>
<tr>
<td>Other expenses/earnings</td>
<td>−12 to 2</td>
</tr>
<tr>
<td>Pre-tax profit margin</td>
<td>3–14</td>
</tr>
<tr>
<td>Tax rate</td>
<td>21–70</td>
</tr>
<tr>
<td>After tax profit margin</td>
<td>1–11</td>
</tr>
<tr>
<td>Solvency(^b)</td>
<td>146–85</td>
</tr>
<tr>
<td>ROE</td>
<td>3–10</td>
</tr>
</tbody>
</table>

\(^a\)Average invested assets in \% of net premiums written (NPW).

\(^b\)Average capital funds in \% of net premiums written.

Table 10.1 Profitability analysis of major non-life insurers (1996–2000)

Table 10.1 presents figures from profitability analysis of major non-life insurers in the 1996–2000 timeframe. The third line gives the underwriting results, which in no way can be considered as brilliant. Essentially, the net investment results save the day. These come from money invested in bonds and equities and, increasingly so, in derivative financial products.

That investments made by insurance companies have credit risk and market risk does not need explaining. Both have the nasty habit of showing up at the most inopportune moment, turning an insurance company’s capital adequacy ratio on its
The science of insurance and the notion of technical risk

head. The way the industry defines it, the insurance capital adequacy ratio (ICAR) is:

- Capital plus reserves
- Divided by an actuarial assessment of capital required.

There is as well the American National Association of Insurance Commissioners (NAIC) capital model and other variants. Independent rating agencies have developed standards to judge the capital adequacy of insurance companies. An example is A.M. Best, which uses BCAR (Best Capital Adequacy Ratio). As José Sanchez-Crespo, of A.M. Best, suggested, his company’s model was originally based on the NAIC model but then there have been improvements as well as a bifurcation in BCAR between:

- A US domestic model which uses development triangles to adjust the baseline factors, and
- An international model which relies on analyst judgment and inputs including inflation, legal environment, profitability, and reserve stability.

The following is BCAR’s fundamental equation:

\[
\text{BCAR} = \frac{\text{Adjusted surplus}}{\text{Net required capital}}
\]

where:

\[
\text{NRC} = \sqrt{B1^2 + B2^2 + B3^2 + 0.5B4^2 + (0.5B4 + B5^2) + B6^2 + B7}
\]

NRC = net required capital
B1 = bonds – default risk
B2 = equities
B3 = bonds – interest rate risk
B4 = credit
B5 = loss reserves
B6 = net written premium
B7 = off-balance sheet

Adjusted surplus is subject to several factors. The most important are: equity adjustments, debt adjustments, potential catastrophe losses, and future operating losses. The most important issue to remember is that an insurance company’s capital adequacy ratio indicates whether its financial staying power makes it secure or vulnerable.

A.M. Best correlates its rating of an insurance company to the numerical value of BCAR. This is shown in Table 10.2. It is understood that the capital is invested in different forms of assets according to criteria established by insurance companies’ boards and senior management.

The low inflation of 1997 to 2002 has meant only average yields on bonds, which have classically been staple assets for insurers and pension funds. Because bond yields
Table 10.2 Rating expressed in function of best capital adequacy ratio (BCAR)

<table>
<thead>
<tr>
<th>Rating</th>
<th>BCAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>A++</td>
<td>< 175</td>
</tr>
<tr>
<td>A+</td>
<td>160–175</td>
</tr>
<tr>
<td>A</td>
<td>145–159</td>
</tr>
<tr>
<td>A–</td>
<td>130–144</td>
</tr>
<tr>
<td>B++</td>
<td>115–129</td>
</tr>
<tr>
<td>B+</td>
<td>100–114</td>
</tr>
<tr>
<td>B, B–</td>
<td>80–99</td>
</tr>
<tr>
<td>C++, C+</td>
<td>60–79</td>
</tr>
<tr>
<td>C, C–</td>
<td>40–59</td>
</tr>
</tbody>
</table>

The cut-off rate between secure and vulnerable is in the 100–114 range.

The 1990s have seen a pronounced trend to asset leverage, outstripping premium growth. Insurers have been obliged to increase their technical reserves because of the growing importance of the liability line of business, higher claims in some lines like medical care, and tort risk amplified through litigation (see Chapter 13). At year-end 2001, world-wide insurers held $11.5 trillion in assets, with life insurers accounting for 82% of the total. Geographically, 75% of assets holdings were concentrated in five countries: the US, Japan, the UK, Germany, and France.

The changing pattern of asset allocation by insurance companies in the US and Europe is shown in Table 10.3. Because much money has moved into equities during the 1990s, and equities have plunged, experts think that many insurers’ portfolios are now under water.

- A good deal of assets in equity had to be sold under distressed conditions.
- The result has been a dramatic erosion of the insurance industry’s former financial strength.

According to a Fitch survey covering 75% of Germany’s 118 life firms, at the end of 1999, the average capital-adequacy ratio was a 185%. By contrast, by the end of 2001, it was a weak 76%, and this position kept on deteriorating. In the first years of the twenty-first century, practically in all G-10 countries the insurance industry has been badly hit, largely because of:

- The mismanagement of its assets, and
- The assumption of unwarranted technical risks.
<table>
<thead>
<tr>
<th>Asset classes</th>
<th>American insurers</th>
<th>European insurers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bonds</td>
<td>62.9</td>
<td>53.0</td>
</tr>
<tr>
<td>Equity</td>
<td>11.6</td>
<td>30.0</td>
</tr>
<tr>
<td>Loans</td>
<td>15.6</td>
<td>8.9</td>
</tr>
<tr>
<td>Real Estate</td>
<td>2.5</td>
<td>1.0</td>
</tr>
<tr>
<td>Investment in Affiliates</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cash</td>
<td>4.6</td>
<td>3.3</td>
</tr>
<tr>
<td>Other</td>
<td>2.8</td>
<td>3.8</td>
</tr>
</tbody>
</table>

Source: Swiss Re, Sigma, No. 5/2002, Zurich

Table 10.3 The changing pattern of asset allocation (%) by US and European insurers

These events are not without precedence, all the way to failure of insurance companies. First Executive and First Capital Holdings failed in 1991 because of large concentrations of poorly performing junk bonds. Also in 1991, disastrous real estate investments triggered the insolvencies of Monarch Life and Mutual Benefit Life.

The insurance industry’s regulators, too, must bear part of the blame. During the investigations into the failure of HIH Insurance, Australia’s biggest-ever corporate collapse, it emerged that the group’s liquidator had filed a A$5.6 billion ($3 billion) negligence suit against the government and the Australian Prudential Regulation Authority (Apra) for alleged negligence in performing duties as insurance regulator. The liquidator also began legal action against HIH’s auditor and actuary – respectively, Arthur Andersen and David Slee Consulting – also for alleged negligence.\(^2\)

10.6 The insurance of operational risk and its underwriting

Assets held by insurers may come under stress because of extending their line of business into new, so far unsettled product areas involving coverage of operational risk. This issue is treated to considerable extent in Chapter 11, in connection to op risk mitigation policies. This section and section 10.7 provide a first look, respectively through references to underwriting and reinsurance.

To improve underwriting results, at the inception of each policy the expected future premiums and investment income has to be actuarially above expected and unexpected future liabilities, in order to sustain financial staying power and leave a reasonable profit. An integrated profitability model is necessary, like the one shown in Figure 10.5, which is based on return on equity (ROE).

There are cases, however, where such computation is biased. One reason may be that the risk profile is volatile, and this has not been appropriately accounted for. Or, the calculations are inaccurate, because while insurance (like some other industry branches) is basing its technical risks on large numbers, the population to which
certain computations are applied is small. Credit institutions have a similar problem in wholesale banking.

An executive of an insurance company, speaking at a meeting in London, took as an example a contract of £1 million for which the risk was calculated as equal to less than 1%. For this reason, the insurer put aside £10 000. But the worst happened – the house burned down and left a gaping hole of £990 000 in the insurer’s treasury.

The optional use of prefunding is another challenge. With prefunding insurance companies receive premiums that (hopefully) will exceed actual risk. But at later years in the insurance policy’s life, the value of remaining premiums will tend to be less than residual expected exposure. Active policy provisions should be instituted to cover this deficit.

The computation of active policy provisions typically makes use of probability theory, and of time value of money – the actuaries’ domain. Such calculations must address a number of contingencies and account for interrelationships that usually exist among risk factors. Assets backing these provisions have to be assessed in regard to:

- Levels of credit
- Interest rate risk
- Reinvestment, and
- Liquidity risk.

Asset and liability cash flows must be matched, and account taken of the fact nearly all the aforementioned activities involve operational risks. A similar statement is valid in connection to calculation of claims provisions, which are the largest component of technical provisions.
For non-life insurers the provision for outstanding claims is about 40% of the liabilities and some 70% of the technical provisions. The exact amount depends on the time horizon of the business, which may be medium-term as compared to the long-term of life insurers.

What about insurance policies issued to cover operational risks of other companies? Normally these should be short-term and involve carefully studied clauses. Models for claims provisions must be established for operational risk contracts. The way to bet is that those written for classical insurance contracts will not be valid.

- New statistical models will need to be developed, negotiated and tested.
- Given prevailing uncertainties in the op risk market, insurance policies should not be long-tailed.

When the settlement period can last many years, the likely result is a high amount of claims. Instead, contracts should specify that claims associated to operational risks are settled soon after being reported, but the total outstanding claim does not build up over time as happens for other types of claims that are not settled for years. The insurance industry can hardly afford another case of asbestos.

While experience with operational risk type of settlements is still thin, because very few such policies have been issued, it is quite likely that operational risk insurance policies will require provisions for incurred claims that have not been paid in full. Experts say these should be divided into two classes:

- Unpaid incurred claims, which have been reported but not yet settled.
- Incurred claims, which have not yet been reported and therefore are pending.

Different approaches are required for each class depending upon the characteristics of each type of operational risk being covered, and its associated claims. The case-by-case method, where an estimate is made for each known claim based on available facts, will in all likelihood eventually become the dominant method, but this is not easy in this decade because experience (and data) with operational risk coverage is still very thin.

The case-by-case method is used today with other types of insurance claims where, in some cases, it is difficult to assess the degree of liability and the amount payable – or there is a great deal of litigation. This approach employs the statistical method, based on a large number of similar types of claims, of the high frequency/low impact variety.

Experts believe that with operational risk coverage there may be, at all times, some incurred but not reported claims, suggesting that technical provisions must be established even for these. The amount of such unreported claims might vary by type of op risk, type of insurance company, type of policy servicing, and so on. It is therefore important to carefully keep claims records, including historical data, and choose a method that permits estimation of current amount outstanding.

Administrative expenses must be established for both high frequency and low frequency operational risks and their future claims. This can be done using patterns with other types of claims and a correction factor indicating that with op risks the
insurance company may expect substantial fluctuations in the annual costs of insured events. Actuarial methods must be developed to deal with this probability.

In connection to coverage of operational risks, solutions must also be found to deal with *unearned premium provisions*. Most jurisdictions require insurance companies to reimburse policyholders if the policy is terminated before the end of the period for which premiums have been paid. Usually, the amount to be refunded is the pro-rata portion of the full premium, but sometimes this amount is reduced to account for expense incurred by the insurance company and its agents.

Even in jurisdictions where there is no requirement for reimbursement, actuarial models should reflect the need to establish a premium provision that accounts for premiums collected but not earned. Thinking by analogy, unearned premium provisions required for both life and non-life policies are making up about:

- 1% of the liabilities of a life insurer, and
- 5% of a property and casualty insurer’s liabilities.

Finally, accounting for technical provisions should make sure that care is taken to cover new types of liabilities with respect to operational risks. Changes in the provisions from period to period have to be reflected in the profit and loss account of the insurer. If a policy was written, for instance, just prior to the balance sheet date, accounting provisions should ensure that premium income is spread over the life of the policy and not taken as profit immediately. This must reflect in an accurate way that there is a possibility of claims, and it should follow the new accounting rules by IASB (see section 10.5).

10.7 Services provided by reinsurance: a proxy for insurance of operational risk

Fundamentally, reinsurance is insurance for insurance companies, which pay a fee or premium to transfer certain risks to another underwriter. For example, an insurance firm may have accumulated a large exposure from its coverage of weather-related events. To limit this technical risk in its *book of business* it purchases reinsurance to protect itself in the event of a catastrophic loss in that area.

In several ways, as an exposure transfer mechanism reinsurance is critical to insurers because it allows them both to go after market share in a certain industry, which may mean concentration of risk, and to distribute or hedge their technical risks to avoid a catastrophic loss. (More about strategies to mitigate insurance risk in Chapter 11.) For good order, the use of reinsurance must be included in any performance evaluation because:

- It constitutes an alternative to further capital provisions, and
- There is potential exposure associated to both over- and under-reinsuring.

The essence of the first point above is that as an alternative to reinsurance (and other means to mitigate risk) provisions may be established taking into account the technical risk the insurance company has taken on, as a result of policies that it
underwrites. The amount that companies are allowed to deduct from technical provisions to account for reinsurance varies between jurisdictions. It depends on:

- Statutory solvency requirements
- Practices established in the past, and
- Prevailing accounting rules.

Reinsurance is a good proxy of policies and practices, to be studied by companies seeking operational risk insurance. Like insurers, what essentially these companies are after is to transfer part of their exposure (in this case op risk) and thereby reduce their capital requirement. When – under conditions that we saw in Part 2 – regulators permit such capital reduction, the model that is built must account for:

- The actual nature of op risk transfer through (re)insurance contracts
- The credit risk that might be associated with the insurance counterparty, and
- Other relevant factors in connection to operational risk management.

This approach, too, is similar to that followed with reinsurance in domains where there is a background of considerable experience, which enables discussion on firm ground of the benefits that are obtained and the obligations resulting from a reinsurance strategy. Box 10.1 gives a snapshot of a guarantor or reinsurance view of capital.

<table>
<thead>
<tr>
<th>Box 10.1 Guarantor or reinsurance view of return on capital:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A = B + C)</td>
</tr>
<tr>
<td>Where:</td>
</tr>
<tr>
<td>(A =) Investor’s Minimum Return, 10–15%</td>
</tr>
<tr>
<td>(B =) Investor’s Return to ‘tied up’ capital, 5–6%</td>
</tr>
<tr>
<td>(C =) Percentage going to guarantor, 5–9%</td>
</tr>
</tbody>
</table>

Let me underline that while reinsurance provides an essential service to insurance companies in spreading risk, many experts believe that it is intrinsically different from primary insurance. Because they assume counterparty risk, insurers need means of assessing the capital adequacy of a reinsurer; and reinsurers must assess whether the insurer has done an adequate risk evaluation job.

Using this model as a proxy for insurance coverage of operational risk, we can see that the duality mentioned in the preceding paragraph will be one of the challenges of negotiating an insurance contract for op risk(s). Borrowing a leaf from the reinsurer’s book, the following elements have to be brought to the reader’s attention:

- A reinsurance contract is negotiated between peer organizations – the ceding insurance company and the reinsurer.
- Both parties are disposing financial means as well as legal and professional expertise in making appropriate evaluation of risks and benefits.
These two points encompass the relationship between a credit institution purchasing insurance for some of its operational risks and the insurer providing the coverage. In both the insurance/reinsurance and bank/insurance cases, supervisory activities must address issues connected to either and both parties and the commitments they make to one another.

Regulators regard financial failures associated to insurers (or reinsurers), and other hazards to the normal course of business, as a threat to stability, not only for reasons of solvency but also because of their potential impact on market confidence. Insurance and reinsurance are risk-spreading processes that, by definition, should know no boundaries but they should appreciate some basic rules:

- The strength of an insurance company is in the wide diversification of its liabilities and assets.
- The wider the pool of capital, and the greater the choice of companies to reinsure, the better the security.

In each country, and in practically each case, the supervisors are faced with a dual challenge: on one side protection of policyholders and public confidence, and on the other prevention of insurance and reinsurance failures against the multiple risks that are in their way. These two goals are difficult to separate – or, for that matter, to reconcile.

At the same time supervisors seek means of countering the effects on their home market of the danger of capital moving to offshore centers. This happens today with reinsurance; it will happen tomorrow with insurance for operational risks, the more so as many of the banks that will seek to buy op risk insurance will be global institutions.

Indeed, since the 1980s, to the supervisory concern stated in the preceding paragraphs has been added that of the world-wide nature of the insurance and reinsurance business. The irony is that in spite of globalization the national market is still geographically fragmented, while many entities, including supervisors, have difficulty in assessing the suitability of foreign reinsurers.

- There is much room for misunderstanding, and
- Systems of accounting and management are still different.

For several decades there has been a strong incentive for supervisors to require the creation of subsidiaries, or the placing of collateral against liabilities in special funds. In spite of the changing global economic environment, because of the aforementioned discrepancies insurance supervisors continue to wish (though they may not be fully satisfied) that foreign reinsurers meet their obligations, and they therefore seek:

- Either to find some means of direct control, or
- To achieve indirect control by maintaining strict requirements on the reinsurance programs of domestic insurers.

These are reasonable goals, which recognize that it is not possible to construct a regulatory regime on the basis of zero failures. That would demand measures that
drive up costs to astronomical levels, swamp innovation, eliminate competition, and replace entrepreneurial decision-making with an irrational strait-jacket that makes compliance virtually impossible.

Trying to strike a balance between globalization and country-by-country regulation, the Comité Européene des Assurances (CEA) has proposed the introduction of a single passport for reinsurers, as a way of securing their world-wide mutual recognition, starting with recognition by all members states of the European Union (EU). According to this model, mutual recognition would be subsequently sought with American and other jurisdictions.

The goal of this proposed system of reinsurers recognition by insurance supervisors is to remove barriers, putting pure reinsurers on a par with insurers in terms of their ability to trade across borders and to set up branches. It is believed that this can simplify administrative arrangements for both supervisors and reinsurers as well as provide a guarantee of financial strength, transparency, and management quality in reinsurance companies operating across borders.

Should these goals be met, and this is not unlikely, there is no reason why the resulting system cannot also be used for the insurance of operational risks. Crossborder recognition is very important because for global companies many of the operational risks are crossborder and, in all likeliness, these will be among the first to be tested through an insurance-based scheme.

Notes

1 Swiss Re, Sigma, No. 5/2002, Zurich.
11 The use of insurance policies to mitigate operational risk

11.1 Introduction

Insurance provides contingent capital. The basic reference in the context of using insurance in connection to operational risk is that the buyer substitutes a relatively small cost, the premium, for a larger but uncertain financial benefit: possible losses from the op risk being insured. The aim is to reduce economic impact of operational losses, in an integrative approach to operational risk management.

Rating agencies say that if an entity holds capital at $α = 0.0003$, therefore at 99.97% level of confidence, this corresponds to about an AA rating in solvency terms. This statistic has been provided for insurers, but the type of coverage also plays a critical role. Fundamentally, it is easier to compute exposure when a policy assures:

- Organizational liability, personal liability, and property risks, rather than
- Unauthorized trading, and
- Operational risks novel to the insurance industry.

To my mind, buying insurance for unauthorized trading is an exercise that holds many surprises for the future. Still, as we have already seen in connection to banks adopting advanced method approaches, the Basel Committee is considering allowing insurance policies to act as mitigant to operational risk charges. Among the challenges in using insurance (or, alternatively, derivatives) as mitigant are:

- Type of coverage and payout
- Levels of coverage and associated triggers
- Incorporation of insurance policies into the capital allocation structure
- Resolution of issues involving litigation
- Delays in payment because of litigation procedures, and
- Some borderline cases involving credit risk and operational risk.

It is too early to comment on practical results of this approach. More certain is the fact that third party insurance helps in removing operational risk from the balance sheet, but at the same time it provides a potentially restrictive cover, and some uncertainty of payment. Self-insurance through captives results in distribution of operational risk across different business lines, but does not remove op risk from the consolidated balance sheet.

Securitization makes available potentially large limits in insurability of operational risk, but this is not yet a mature market. As a result, the issues may find no takers, and
The use of insurance policies to mitigate operational risk

securities may be rated below A (see Chapter 12). As a Basel Committee document has suggested, ‘Banks that use insurance should recognize that they might, in fact, be replacing with operational risk counterparty risk.’ There are also questions relating to:

- Liquidity
- Loss adjustment
- Voidability
- Moral hazards
- Limits in product range, and
- Inclusion of insurance pay-outs in internal loss data.

Another challenge is payment lag, that is to say, the time it takes for an insurance company to pay damages associated to credit risk or operational risk. This is the regulators’ largest reserve about op risk insurance, because the time lag to payment is as important as the surety of such payment. The latter might be put in doubt because of counterparty risk. Both may affect the bank’s liquidity.

The time lag risk impacts much more on the smaller credit institution. Big banks may fund operational risk damages, and damage control activities, out of current cash flow. Small banks don’t have that possibility, and though they paid their op risk premium to the insurer, they may find themselves against the wall when adversity hits.

However, the use of insurance as a means of operational risk transfer still has to be studied within the perspective of alternative risk transfer (ART). Operational risk mitigation is the subject of this chapter. At the same time, the wisdom of using insurance coverage should be examined in connection to how independent credit rating agencies look at the insurance industry at large, and at the insurability of new product lines (including op risk) in particular. This is the subject of Chapter 12.

11.2 Cost of equity, cost of debt, and cost of insurance

By creating a capital charge targeting operational risks facing entities under their authority, regulators opened up a new market. They also led the way towards integration between operational risk and other types of risk, while at the same time they raised questions regarding insurable perils and hazards. No opinion can be expressed on their frequency and impact prior to 5 or 6 years of somewhat wider insurance coverage, which means 2012 or thereafter.

The lack of precedents, and of statistics, in insurability of many operational risk types will be a problem for some time. Ambiguity is one of the basic factors that limit insurability. In many instances, the random variable describing a given operational risk has to be insured without the benefit of a probability distribution, because of:

- Absence of historical data, or
- Imperfect knowledge in this domain on the part of actuaries (see Chapter 10).

Because of these factors, the reader should appreciate that it is very difficult to calculate an insurance premium which protects the insurer from the exposure it is assuming, and at the same time is appealing to the insured.
Worst-case scenarios have high premiums, and High premiums are unattractive to the insured.

This being said, there is no question that insurance for operational risk is an alternative whose cost should be taken into account for an objective evaluation, not just in absolute terms but also comparatively, in terms of returns, to:

- The cost of debt, and
- The cost of equity.

The cost of debt can be determined through the firm’s current borrowing rate and interest rate mix. These reflect the expected return of debt holders. One way to compute the cost of debt is to first project the expected interest expense that a company expects to pay on its outstanding debt each year. This being done, the cost of debt is the discount rate that equates:

- To the current market value of debt,
- The present value of the stream of expected interest payments.

In a way similar to the cost of debt, which reflects the expected return to debtholders, the cost of equity maps the expected return to shareholders. Different models are available for this computation. One of them is the Capital Asset Pricing Model (CAPM), which calculates the cost of equity as the sum of:

- The risk-free interest rate (such as US Treasury Bonds), and
- The risk premium on the company’s shares, projected in the coming years.

Expected risk premium is based on the sensitivity of a share’s price to overall stock market movements. This approach has been consistently used by financial analysts, so that there is a body of knowledge in its regard. Therefore I employ it as part of the frame of reference in the cost of equity equation.

As the preceding paragraphs have shown, the cost of insurance is a different ball game. A good way of handling this issue is to define the cost of insurance as the entity’s current insurance rate for its covered operational risks, measured as a percentage of reduction in operational risk capital requirement because of using insurance. The discount rate equates the present value of expected insurance premiums to the insurance value.¹

Solving the cost of insurance puzzle is an urgent matter, because the number of experts who look at insurance coverage of operational risk as being both worth while and an important business line for insurers is growing. Swiss Re new markets, for example, offers several protection schemes for operational risk through insurance. One of them indemnifies only losses above a deductible of $50–100 million, but covers virtually any known risk, including:

- Unauthorized trading,²
- Professional indemnity,
- Employment liability, and
- Computer crime.
Note should also be taken of an eventual operational risk loss *equity put*. It enables its buyers to fund losses by issuing new securities at a pre-loss price. Other risks addressed by insurance or derivatives are: bandwidth price risk in emerging telecommunications markets, and water price risk in emerging water markets. These are basically market risks that can morph into operational risks.

A critical computation in this connection is to estimate the future stream of insurance premiums that the company is likely to pay, including those for operational risk. Different scenarios should be examined, for an alternative op risk transfer,

- From securitization,
- To a custom-made insurance policy underwritten by an insurer or reinsurer.

If insurance protection is provided by capital markets through securitization or derivatives, the insurance premium can be determined as the current trading price in over-the-counter trades. If it is to be obtained by means of an insurance contract, the current insurance premium may not be on hand, but it might be possible to bet on indicative quotes from insurance companies.

In deciding which strategy to follow, the reader should be aware of major differences between the three types of cost explained in this section. Two of them, cost of debt and cost of equity, are references to balance sheet capital. The securitization option is off-balance sheet (OBS) capital, accessible through derivatives or by means of transferring risks to other firms: the insurers and reinsurers. This transfer alters:

- The retained risk profile, and
- The capital structure of the entity.

By paying a premium to an insurance company, a firm can eliminate its exposure to some type of operational risk. The insured entity does not have to keep any paid-up capital or borrowed money to cover the insured operational risk, though it evidently has to pay the insurance premium.

In conclusion, the use of an insurance strategy for operational risk reasons requires understanding of the role of both on-balance sheet and off-balance sheet corporate capital. It also calls for an appreciation of the relevance of the approach to be chosen to the company’s activities and its operational risks. The insurance option should be retained as an alternative, but it is most wise to remember that this is a field in the early stages of its development and one should not put all one’s eggs in the same basket. (See also Chapter 12 on credit rating insurance companies.)

11.3 Operational risk securitization and moral hazard

Some of the proponents of the use of insurance as a means of mitigation of operational risk say that even if it has many uncertainties it is a better solution than doing nothing. This is not the right way of looking at the issue of capital allocation for operational risk because nobody ever said that a financial institution should do nothing. Well-managed companies examine their alternatives.

The four chapters of Part 2 have documented that between doing little or nothing and establishing an integrated control of operational risk commensurate with
corporate strategy and regulatory requirements, there exist many intermediate levels. These are shown in Figure 11.1 in a way that graduates into an operational risk control methodology from compliance and cause and effect analysis (step 3) to the think operational risk level.

The salient problem in thinking operational risk, in terms of coverage through insurance and/or derivatives, is the lack of experience in doing so and the absence of reliable data, particularly, the lack of specific cases that can teach where and what can go wrong; or things can be twisted in a way that alters original intentions. As proxy to a case study on what could go wrong, I chose recent happenings with credit risk and its securitization.

According to a report in the *New York Times*, Citibank, a major lender to Enron, apparently protected itself from a significant portion of Enron’s credit risk by passing it on to investors in credit-linked bonds. Citibank accomplished this risk transfer through an innovative transaction that combines credit derivatives and insurance with traditional securitization.皮皮

Something comparable to this were the 1997/1998 J.P. Morgan Bistro transactions. At that time, this was seen as a new sort of synthetic securitization, the tip of the iceberg in a major trend in structured finance. The name of the game in both these examples is the increasing use of securitization to manage risk rather than to:

- Sell assets, or
- Raise funds.

J.P. Morgan Chase seems to have perfected the credit risk transfer method, by way of capital markets, with WorldCom. While experts at Wall Street have suggested that the bank’s loans exposure to the defunct telecommunications company amounted to
$17 billion, which is what has been written in the press, J.P. Morgan Chase itself said that its loans exposure to WorldCom was only $20 million. Presumably nearly $17 billion were securitized and credit risk was assumed by investors.

Another way to look into capital markets and their instruments as risk transfer mechanisms is that this transformation has been the outgrowth of a new trend. This started in the mid- to late 1990s, and many analysts at Wall Street think that it will be gaining momentum in the coming years. It is not unlikely the operational risk transfer will add to its momentum if institutional investors and high net-worth individuals come to like it.

Will investors come round to buying securitized protection from unauthorized trading? For the time being, mainly the insurers have shown interest. Section 11.2 referred to a product by Swiss Re. This is not the only example. Following the trade-related losses at Barings, Sumitomo, and other entities, SVB, one of Lloyd’s syndicates, began offering rogue trader insurance.

- This reimburses a firm for damages sustained from unauthorized trading.
- The basic condition is that such trading has been concealed from management’s attention.

The first reported buyer of this new type of insurance-linked protection, to my knowledge, has been Chase Manhattan. It bought $300 million in rogue trader cover for a rumored annual premium of $2 million, or two-thirds of 1 percent. This is one of the best examples regarding early date (middle1990s) insurance coverage for operational risks faced by credit institutions.

While it is still too early to have a firm opinion about which way insurance coverage for op risk may go, and how extensive the range of op risk falling into the insurance net will be, a reasonable projection is that several issues may be tested for insurability creating a range within the broader definition of operational risk. Policies might, for instance, target exposure to loss resulting from inadequate or failed internal processes, people, and systems; or from external events.

For their own good, insurance companies should take notice that internal control failures, like the rogue trader paradigm, relate to human failure and, as such, they are dynamic. Other dynamic issues subject to insurance coverage connect to technology; for instance, the case of intruders. As Figure 11.2 shows, a study by Cornell University has documented that intruders use technology to increase the sophistication of their attack.

Participants in this study drew attention to another major risk associated with human failure: moral hazard. Moral hazard consists of actions of financial agents in minimizing their own risk and in maximizing their profits to the detriment of others. It is augmented by the fact that these economic agents don’t bear the consequences of their actions due to occult, Mafia-type protection, nepotism, and other circumstances that prevent the assignment of full damages.

As with the different rescue plans by the International Monetary Fund, central banks (see also Chapter 14) or other parties, ex ante moral hazard makes sure that, because the risk is (so to speak) fully insured, the insured party has less incentive to prevent its occurrence. As a result, the probability of higher risk-taking starts to rise.
so that a premium that is held steady becomes less and less representative of real exposure:

- If the moral hazard cannot be properly contained, a risk may well become uninsurable.
- At the extreme, any insurance coverage obtained would have disastrous consequences, because the risk of accident will rise as a result of the availability of such insurance.

Indeed, the fact that liability insurance was banned in many western European countries up until the nineteenth century is a direct outcome of this moral hazard problem. With operational risks, new, more rigorous approaches are needed that allow insurers to fight against moral hazard in its different manifestations. For instance, a sort of partial insurance should:

- Keep the insured exposed to risk, and
- Oblige the insured to develop effective prevention measures.

There is also ex post moral hazard exemplified by the increase in claims against the insurance policy, beyond the services the claimant purchases when insured. In the case of medical coverage, for example, ex post moral hazard include excessive visits to doctors, too many medicines purchased, long hospital stays, and so on, which are at the roots of the ruin of social security.

In conclusion, the lack of precedence in operational risk coverage will be a problem for some time. As I have already brought to the reader’s attention, one of the basic factors that limit insurability is ambiguity amplified by the absence of historical data.

Figure 11.2 Intruders use technology to increase the sophistication of their attack. (Based on a study by Cornell University)
Also, imperfect scientific knowledge makes it very difficult, if not outright impossible, to establish a pattern – and therefore to calculate accurate insurance premiums for operational risk events.

11.4 Advent of insurance-linked protection vehicles and underwriters risk

One of the key questions that will be posed with insurance coverage of operational risk, if it becomes popular, is how it should be treated from a financial reporting viewpoint. The answer to this is still pending, but a useful inference can be made through analogical reasoning from the accounting status of derivatives. Swiss Re suggests that regulators are currently addressing the issue of how an insurer's purchase of a derivative security to hedge its underwriting risk should be treated for accounting purposes.

Proponents of underwriting of contracts involving derivatives have asked the supervisory authorities to allow liberal underwriting accounting approaches, as long as the correlation between actual losses and the payoff of the derivative instrument is sufficient to keep basis risk below some acceptable threshold. Opponents argue that there must be actual indemnity because of significant correlation between:

- Actual losses, and
- Payoff of the derivative instruments.

Other experts, more neutral to both sides, say that for a derivative to be deemed effective, and therefore qualify for underlying accounting, it need only exhibit some positive correlation with the underlying risk. Today, these regulatory issues concern primarily bankers and insurers. Tomorrow, they will be important to everybody, as all sorts of companies and investors will find themselves in a complex situation regarding tax issues and financial reporting at large. For this reason, it has been a deliberate choice to include in this text a brief appreciation of insurance-linked securities (ILS).

Let's start with a couple of definitions. Approaches involving the capital market in the insurance domain are also known as insurance-linked mechanisms for risk sharing. As the preceding sections demonstrated, to the insurers they present advantages because the capital market can be a great reinsurer, particularly for supercatastrophes. The problem is not in the design of these instruments, as there exist several types of them, but:

- In attracting investors from outside the insurance industry, and
- In providing ways and means for detection and management of trend-setters.

Early adopters typically include companies with institutional knowledge of insurance markets, investing in ILS because they offer a way to enter a line of business, or region, without building costly infrastructure. Ultimately, however, it will not be companies at large but focused investor populations, like institutional investors and high net-worth private individuals, who will contribute the most to the success of this market.
Insurers familiar with the benefits derived by involving the capital markets say that one of the attributes of insurance linked-securities is their liquidity, provided the secondary market for these assets is indeed active. In this case, investors can unwind their positions at relatively low cost. The opposite is also true. The absence of a liquid secondary market makes insurance-linked securities a non-attractive investment. This leads to a challenging problem:

- For the pricing and trading of ILSs to become appealing, more investors must become interested in them.
- Investors, however, would rather see more deals flow in exchanges – rather than OTC – before devoting time and effort to analysing the ILS.

Analysing risk and return with insurance-linked securities evidently involves the action by reinsurers and the rates which they apply. After all, the capital market’s interest in ILS is in competition to the reinsurance industry. As Figure 11.3

![Figure 11.3 Statistics on catastrophe-linked securities in the mid-1990s to 2001 timeframe.](Source: Swiss Re, Sigma No. 3/2001, reproduced with permission)

documents, the issuance of catastrophe-linked securities stagnated after reinsurance rates fell in the late 1990s.

Another major factor in the acceptance of ILS is their design. The majority of catastrophe securitizations rely on one of three types of trigger: indemnity, index, and a physical criterion. Indemnity is the most popular form, used for more than half the total issuance. It employs settlements based on actual insurer losses. Critics say that while these deals have no basis risk, they do have the disadvantages of:

- Lengthy periods to settle claims, and
- Biased selection by the insurer; therefore moral hazard.
Index securitization is the second alternative, today representing about a quarter of all deals. It uses settlements based on industry losses reported by an independent agency, but has the disadvantage that such deals may pose substantial basis risk to the issuer. Different models exist for a physical criterion to settle claims. An example is the magnitude of earthquake activity in and around a given area as measured by a known, reliable authority specializing in this type of risk. This physical measure becomes key to determining payouts.

No doubt an important step towards a liquid market for insurance-linked securities is the establishment of benchmarks through which industry players can monitor the progress of an instrument and its underlier. This can be further assisted by the existence of stock market indices such as S&P 500, FTSE 100, and Nikkei 225, as well as benchmark securities like the 10-year Treasury bond.

Insurers work hard to make ILS acceptable. They suggest well-defined benchmarks will be instrumental in providing a foundation for capital market ILS solutions. They also seem to appreciate that the absence of a reliable benchmark will discourage investors from trading securitized insurance risks, including those of operational risk type. Which are the insurance-linked instruments that might attract the interest of capital markets in the coming years? Swiss Re suggests a number of them. In alphabetic order, these are as follows.

- Bank-funded life insurance takes the form of traditional financial reinsurance, where the reinsurer co-underwrites a book of life business by agreeing to pay a percentage of all future claims on a book of life business and receives in return the same percentage of premiums and investment earnings associated to that book. Catastrophe bonds (CAT bonds) are different.
- Catastrophe swaps is another way to transfer insurance risk. A series of fixed, predefined payments is exchanged for a series of floating payments whose values depend on the occurrence of an insured event. Contingent capital transactions take still another approach, providing the buyer with the right to issue and sell securities: equity, debt, or some hybrid products.
- Exchange-traded catastrophe options are listed on the Chicago Board of Trade. They have the advantage of being publicly traded in a regulated exchange. So far, these have not been successful. Some experts, however, think exchange-traded instruments may eventually become a popular means of transferring insurance risk to capital markets. We shall see.
- Another possibility is industry loss warranties (ILW). They resemble a catastrophe swap but are structured as a reinsurance transaction, with the risk transfer mechanism being a double trigger. This trigger is activated only if both insurance industry losses and actual losses incurred by the purchaser of the ILW exceed pre-established thresholds.
- An alternative insurance-linked security is life securitization. In this transaction, an insurance company sells its rights to receive mortality and expense fees or policy
acquisition expenses to a special purpose vehicle (SPV) which finances the purchase of these rights. The SPV does so by issuing securities to the capital markets.

In conclusion, catastrophe bonds, options, and swaps have existed for some time, but until recently they were a small amount compared to contingent capital. As we saw in Figure 11.3, they grew rapidly in 1997 and 1998 but then tapered off. This is indeed a complex market and much will be learned about it in the coming years. Therefore, in the mean time banks planning insurance coverage for operational risks, as well as insurers and reinsurers, should be very, very prudent.

11.5 Integrative approaches through alternative risk transfer

The examples presented in sections 11.3 to 11.5 of this chapter are in essence alternative risk transfer (ART) solutions. The concept of alternative risk transfer has existed, and it has been practised, since the 1980s. In principle, but only in principle, alternative risk transfer policies are followed when it is possible to quantify risk.

As we saw in the preceding sections, alternative risk transfer mechanisms usually bet on capital markets instruments for transfer of risk exposure, including catastrophe risk. For their part, the markets require some degree of certainty; with this, they are increasingly assuming risks whose cause and effect may not be as well established as with elder instruments. Table 11.1 provides a comparison between:

- Classical insurance industry coverage, and
- Insurance coverage involving the capital markets.

ART policies have been developed during the past few years but they still lag behind the classical insurance business by a wide margin. This is shown in Table 11.1. Some experts say that, after many years, the capital market will no doubt mature as an alternative risk transfer mechanism, even if this is not the case today. Other experts, however, take a wait-and-see attitude.

Alternative risk transfer is no monolithic solution. Its approaches can be polyvalent, but polyvalence has prerequisites and it comes at a price. A concept that might give insurance-linked operational risk coverage a boost is that of finite-risk reinsurance. This basically represents a combination of:

<table>
<thead>
<tr>
<th></th>
<th>Classical insurance industry coverage</th>
<th>Coverage involving the capital markets</th>
</tr>
</thead>
<tbody>
<tr>
<td>History</td>
<td>300+ years</td>
<td>±10 years</td>
</tr>
<tr>
<td>Contracts</td>
<td>Trillions</td>
<td>About $100 billion</td>
</tr>
<tr>
<td>Rating</td>
<td>AAA and AA insurers</td>
<td>No rating by independent agencies</td>
</tr>
<tr>
<td>Loss payments</td>
<td>Billions</td>
<td>?</td>
</tr>
<tr>
<td>Market continuity</td>
<td>Known</td>
<td>Unknown</td>
</tr>
<tr>
<td>Limits to exposure</td>
<td>Higher</td>
<td>Lower</td>
</tr>
</tbody>
</table>

Table 11.1 A comparison between the insurance industry and the capital market
The use of insurance policies to mitigate operational risk

- Risk transfer, and
- Risk financing.⁶

While it is based on the same instruments as traditional reinsurance, finite risk products put limits on exposure, which is attractive to the underwriter as well as to buyers of securitized instruments. An example mentioned in section 11.2 is that of a franchise of $50 million or $100 million, but limits may also be defined in a dynamic way in conjunction to some kind of specified event.

The target of such limits is to stabilize insurance/reinsurance costs connected to coverage of operational risk – while at the same time expanding underwriting capacity and smoothing fluctuation of results. Because of the nature of risks, however, effective limits should account for:

- The multiyear period of contracts
- Particular characteristics of each operational risk covered, and
- Possible sharing of financial results with the credit institution buying insurance for its op risks.

Extrapolating from other practices involving finite coverage insurance products, it can be seen as likely that an increasing number of offerings will be combined with more traditional type policies in blended covers. They will also account for response by regulators, public auditors, and tax authorities. For instance, regulators may refuse to recognize finite solutions as reinsurance unless they involve a substantial transfer of underwriting risk.

Chapter 10 referred to the fact that the level of acceptance of operational risk coverage by regulators, and other stakeholders, is far from being a foregone conclusion – let alone challenged in courts. Regarding the level of coverage, however, it is appropriate to notice that the classical insurers’ channels don’t give 100% risk protection either, though they do provide a range of choices for risk transfer.

Relatively popular in alternative risk transfer nowadays is the use of the derivative financial instruments by insurers and reinsurers. In Figure 11.4 the concept underpinning this statement is visualized through operating characteristics curves in a two-dimensional space, involving:

- Likelihood of an event, and
- Degree of insurance-based protection.

Basically, the level of coverage is a bilateral issue between insurer and insured. Beyond this come the regulators’ concerns regarding alternative risk transfer at large, and other issues connected to operational risk. Among other reasons, concerns by supervisory authorities are propelled by:

- Complex voidance clauses, and
- Possible narrowly defined events.

Currently, different working groups address these issues, including a Basel Committee subgroup and the Property & Casualty Insurance Industry Working
Group. If this work is successful in taking care of all stakeholder worries (regulators, insurers, and insured) it could make the insurance of operational risk a more strategic product than it currently is. The die, however, is not cast.

To be successful and long lasting, the work currently in progress for insurance coverage of operational risk must lead to a better definition and taxonomy of different types of exposure. This includes Pillar 1 charges, as well as a clarification of possible implications of Pillar 2 on insurance and, most importantly, the market discipline that is Pillar 3.

In summing up the concepts presented in this section, it can be stated that because they must account for different viewpoints, and regulatory issues, solutions will not be easy. Two fundamental principles of insurance are up for revaluation: the transfer of risk and sharing losses. But the ongoing work may reinforce the change that has taken place in the last 4–5 years, including:

- Greater attention to detail
- Wider coverage of risks, and
- Higher limits in alternative risk transfer.

We have gone a long way from the original concept underpinning what is today known as finite risk reinsurance. By several accounts, the more liberal approaches originated in the 1960s, when a lack of traditional insurance covers for oil exploration and drilling prompted the British insurers to develop some alternative solutions. The issues faced today are quite different – and so are the stakes – but there are also similarities between this past situation and insurance coverage of operational risk.
11.6 Frequency and impact of events in operational risk transfer through insurance

Like any other type of risk coverage, operational risk transfer using insurance indemnifies the credit institution from losses arising from a given type of op risk exposure. Also, as with all other types of insurance, before the firm can buy the insurance protection, it has to demonstrate that it has an insurable interest; and the insured entity can collect only if it actually incurs a loss.

Seen under this light, insurance-linked operational risk coverage is hedging. There exists, however, a major difference from one form of hedge to another – as well as between bilateral hedges and those made in capital markets. In the latter case,

- Hedges are not indemnification contracts, and
- Payments are made regardless of whether the firm incurs a loss.

Another major distinction between capital market-based hedges and the prevailing notion of insurance is that a company can purchase the hedge, such as a derivative, whether or not it is exposed to the underlying risk. If it is not exposed, then the hedge is really a speculation.

Speculation is precisely what has happened during the 1990s with derivatives at large, and it has accelerated to the point that four global banks – J.P. Morgan Chase, Deutsche Bank, Citigroup, and Bank of America (in that order of exposure) – hold among themselves more than $60 trillion in derivatives, in notional principal amount. Demodulated into toxic waste in case of global crisis, this represents an amount roughly equal to the US Gross National Product.7

The reader will appreciate that there are similarities between insurance for operational risk purposes and more classical hedges. For instance, like derivatives, insurance is off-balance sheet capital that covers the risks transferred by the firm. Like debt and equity, different insurance contracts can be constructed to address separate layers of risk:

- Exposure to risk comes by layers of insurance from high frequency events to low frequency but high impact events.
- Therefore, attention should be paid to excess-of-loss layers that cover low frequency events that can have a high loss impact.

Frequency and impact of operational risk events have a great deal to do with their insurability. They are necessary complements to the unambiguous identification of risk to be insured, and key to the correct pricing of the insurance contract.

Insurability also requires that the severity of the potential loss or the amount insured is not too small, because the transfer costs created by the operational risk sharing mechanism will be too high. At the other end of the scale are situations where the occurrence of events with huge financial consequences calls into doubt the wisdom of insuring them in the first place. After all those exceptional situations have been eliminated, it becomes feasible to define an operational risk insurance framework described in the frequency/impact event space.

Frequency and impact of operational risk events correlate to the concepts of limits and of finite risk, covered in the preceding sections. The same is true of the time
dimension of operational risk insurance coverage. The best policy is that of making a
distinction, which is practiced in reinsurance, between:

- Prospective contracts, which cover current and future underwriting years, and
- Retrospective contracts, where long settlement periods call for using the time value
 of money to price op risk insurance contracts.

Today, retrospective contracts are primarily found in long-tail business, such as
occupational disability. Some experts think, however, that certain types of operational
risks are also long-tail. Therefore, they can be better served and priced by means of
retrospective contracts. The problem with operational risk insurance is that, unlike
the coverage of disability, spikes may be hiding in the long tail.

Usually, loss portfolio transfers and insurance covers for adverse developments
are retrospective in nature. That is, they relate to underwriting years in the past
and, other things being equal, they require larger loss reserves. Precisely for the
same reason of retrospective characteristics, insurance of some types of operational
risk will quite likely resemble adverse development covers (ADCs). These provide
covers for losses resulting from contracts concluded in the past whose aftermath,
however, is felt in:

- The present, and
- The future.

For these reasons, to identify exposure associated with operational risk, and price
appropriately contracts for insurance cover, estimates must be made regarding the
frequency with which specific events occur and the extent of losses likely to be faced
because of each of them. Classically these estimates use historical data of previous
events and an analysis of what is likely to occur, but such data are not available with
many types of op risks.

This may not inhibit alternative risk transfer per se, but it has an adverse impact on
product pricing – and, therefore, the insurance company’s bottom line. Depending on
the frequency and impact of potential loss from operational risk events the conclusion
may be reached that:

- Some op risks are not insurable,
- While others are not worth being insured.

Insurability of risks requires that the defined operational risk characteristics do
exist, and losses have a stochastic character. At the same time, changes in supervisory
and accounting regulations must be accounted for, as in the last analysis it may be
found that extremely high impact op risk events are scarcely insurable even if they are
low frequency. Some people question this statement saying that it is not true with
earthquakes. Such argument forgets that:

- Earthquakes are natural events happening as one-offs.
- Risk from rogue traders and CEO malfeasance are man-made op risks, which
 sometimes, as in 2000–2002 become an industry trend.
Also, the challenge posed by statistics should never be underestimated. When the probability of the occurrence of certain operational risk events is very low, historical data would tend to be poor or even non-existent. Then, risk assessment and risk modeling may be nearly impossible – and the same is true of correct pricing for risk coverage.

11.7 Insurers who don’t do their homework get burned

In has been a deliberate choice to bring to the reader’s attention criteria of insurability which can turn an insured company’s operational risk into the insurer’s own technical risk. Any insurance contract that is long on hopes of getting new business but short on critical analysis, is a potential time bomb. To back-up this statement the present section presents some real life case studies, which complement those already discussed in Chapter 10.

In Britain, Norwich Union cut payouts to some policyholders as the markets where it had invested its assets, for greater return on equity, continued to fall. In the Netherlands, in 2002 Aegon issued the first profit warning in its history, after plunging stock markets and underwritten claims hurt performance. Many insurers do not heed the advice of Imam bin abi Taleb, who wrote in the sixth century AD: ‘If God were to humiliate the human being he would deny him knowledge’ – or the fruits of research. That’s what doing one’s homework is all about.

Among several German insurance companies that suffered, the example of two is outstanding. One is giant Allianz, which, in 2002, despite a still strong balance sheet saw its stock at a seven-year low – back to 1995 prices (more on this later). Another German insurer with big problems has been Familienfürsorge, which was forced into merger with HUK-Coburg, after admitting it could not meet obligations to policyholders.

Also hard hit have been two of the three major Swiss insurers. Zurich Financial Services, the embattled Swiss insurer lost a record $2 billion in the first half of 2002. In the aftermath, it was forced to restructure and raise $2.5 billion in fresh capital to save itself from bankruptcy. It also downsized to its core business after a disastrous foray into derivatives. To cut costs, the new management had to axe thousands of staffers as part of a $1 billion cost-savings plan. But is the reduction of headcount supposed to act as a wonder-drug for the ailing company?

Winterthur Insurance has also been on the sick list. Its parent, Crédit Suisse Group, was forced to inject $1.1 billion in new capital because of the markets’ plunge. In musical chairs similar to those of Zurich Insurance, Winterthur’s CEO was replaced, and a few months down the line the CEO of Crédit Suisse himself had to quit. What these examples have in common is they represent the fallout from management risk:

- From forays in commercial banking, in the case of Allianz
- To ill-defined ‘financial services’, which largely means high leveraging and bleeding with derivatives (in the case of Zurich).

Because when these decisions were taken they looked to be ‘sure bets’, but later on turned sour, insurers and reinsurers will be well advised to do a great deal of
homework before jumping into operational risk coverage. Insurance companies are not, and should not think of themselves as being hedge funds ready to:

- Bet the shirt of their stakeholders in ‘me to’ market risks, and
- Play big in uncharted waters where they can sink with all their cargo.

There has been no lack of insurance company woes in the last year. On 14 August 2002, A.M. Best, the insurance industry’s rating agency, downgraded eight British life companies, including well-known names like Scottish Assurance and Pearl Assurance. A.M. Best was concerned about the falling value of the assets that back their liabilities – therefore their readiness in meeting policyholder claims.

Not surprisingly the capitalization of insurance companies has greatly shrunk because they played it big in the stock market. At the London Stock Exchange the share price of Royal & Sun has fallen 70% in just one year – 2001; and it fell again in 2002, in the aftermath of revelations about potential losses with asbestos claims.

The risk from prolonged litigation has haunted insurers. On 13 September 2002, Allianz had to pump $750 million into Fireman’s Fund, a US insurance subsidiary, to cover a surge in asbestos and other environmental claims (see Chapter 13). Earlier in 2002, the company’s private-equity operation got burned when several investments, including planemaker Fairchild Dornier, failed.

Stock turmoil and a weak dollar reversed the growth in capital gains management. Funds managed for others by Allianz fell $42 billion, to $564 billion, in the first half of 2002. There has been more bad news for the German insurer. The worst case in its books has been Dresdner Bank, which lost $1 billion in the first half of 2002. Dresdner’s corporate division was in trouble on two fronts:

- It has billions in bad debts, stemming from heavy loans to such companies as Kirch Media in Germany, WorldCom in the US, and a number of Latin American borrowers, and
- It came to the rescue of Dresdner Kleinwort Wasserstein (DKW), which bled money as trading revenues fell and it faced fees from mergers as well as acquisitions and the underwriting slump.

This is the downside of the merger between different sectors of the financial industry. Dresdner Bank had to nearly double its bad-loan provisions, to more than $1 billion. The acquisition of Dresdner Bank by the insurer proved to be a thorn in the side. Some experts said Allianz should never have bought Dresdner. Others suggested that it should sell or close DKW. In a nutshell:

- The insurer’s strategy of building a global financial powerhouse has flopped,
- But its top management seems to be still committed to it, in spite of the bad news.

To make ends meet, on 18 September 2002 Allianz was selling off its stock portfolio, as Germany’s Dax stock index crashed to a new five-year low. The Dax was plunging towards the 3000 mark (when these lines were written, December 2002) compared to 8100 points in March 2000 and 5400 points in early 2002, but
The use of insurance policies to mitigate operational risk

according to market analysts Allianz had to sell equities in its portfolio in order to save at least some of its core capital.

Other insurance companies, including Munich Re, were also selling their stock holdings, further contributing to the market meltdown. The panic button was hit by insurers because about 30% of the assets of Europe’s insurance companies had been invested in the stock markets (see Chapter 10), and more than $165 billion of that money evaporated with the stock market crash.

The capitalization of major insurance companies themselves took a severe hit. The stock of Allianz, for instance, stood above 400 euro in 2000, but it fell below 100 euro in mid-September 2002, the lowest level in nine years, challenging the insurer’s top management in regard to solvency.

Insurers in other continents did not fare that much better. AMP, a Sydney-based insurer and one of Australia’s oldest companies, has been badly hit by its exposure to the falling UK stock market. In late September 2002 the difficulties at AMP’s UK insurance division culminated in resignations of the Australian financial services group.

Like Zurich, AMP had branched into wider financial services outside its original charter. It owns Henderson Global Investors, the fund manager, and Pearl Life insurance. The parent company’s shares almost halved in the late 2001 to late 2002 timeframe, hitting a low of A$11.25 on 23 September 2002, down from more than A$30 in mid-1998 shortly after the group demutualized and listed. The latest difficulties at Pearl only emerged after the Australian Securities and Investment Commission demanded clarification of statements about the insurer’s capital adequacy buried in the back of a prospectus for an AMP capital raising.

11.8 Challenges with value accounting in the insurance business

Doing one’s homework means several things at the same time. Stock market woes left aside, quite often companies forget that part and parcel of sound management is the prognostication of technical risk involved in future claims. The number of insurance companies that do not excel in this domain is in itself surprising.

In 1999, Korea Life Insurance, the country’s biggest, with an 18% market share, was saved from bankruptcy with taxpayer’s money. In 2002, the government was hoping to recover some of its money by selling 51% of it for $600 million. The suitor has been Hanwha Group, Korea’s tenth largest chaebol. But according to published reports, Hanwha had several marks of ‘distinction’.

- It did not report a profit in five years,
- Its debt equalled 232% of its equity, and

It was caught by regulators manipulating the books of three of its units.9

The irony, and the loophole, is that according to Korean law, this huge amount of 232% leverage would disqualify it from starting an insurance company, but not from buying one even if its finances are shaky, and policyholders of the insurers are at risk.
to lose their coverage and their nest egg too. Nobody can blame independent rating agencies for being vigilant to such happenings (see Chapter 12).

Experts say that a similar loophole may exist, with fair value accounting in certain forms of insurance. Theoretically, all stakeholders in the insurance business stand to profit from fair value accounting. But all practical aspects are not settled, including underwriting, pricing, and recognizing operational risk exposure.

Under fair value accounting, practically all assets and liabilities of an enterprise would be included in the balance sheet at their market value. This is the general rule. Each industry, however, faces problems of its own. For instance, in insurance there is an argument for recognizing unrealized profits on existing contracts at the time when the contracts are entered into.

Using the case of life insurance policies as a proxy, this would mean anticipating the expected profits to be earned over the total period of the contract. That’s tough, because generally the embedded value of the contract can be over a period of 20–30 years. Fair estimates can only be made with the benefit of long experience – which is not the case with op risk.

Another issue under discussion with relevance to operational risk coverage is whether future profits on expected new business should be recognized. This represents the appraisal value of life insurance contracts and renewal value of non-life insurance contracts. Both issues relate to basic features characteristic of the insurance business, and both will have an impact on policies underwritten for operational risk.

To better appreciate the challenge associated to fair value accounting in insurance, we should briefly return back to basics. Typically, insurance companies give a commitment to policyholders to make agreed payments if a specific insured event occurs. As insurers provide cover, risks are transferred from policyholders to the insurance firm – a practice that is consistent with their core business.

- Insurers are responsible for a continuous provision of coverage over a specified period of time, and
- The provision of insurance protection covers the whole period set out in the insurance term.

The systematic assumption of risk is a stochastic process but timeframes vary. Life and health insurance contracts generally cover very long periods, over which the insurance firm does not have the right to cancel the contract. With property and casualty insurance, short duration contracts are more common. If the provision regarding management intent specified by Statement of Financial Accounting Standards 133 (which targets accounting for derivatives) is applied in connection to fair value accounting in insurance, then:

- The aforementioned long-term commitments will be carried at accrual value,
- While short term commitments, as well as the contents of the trading book, should be marked to market.

Not everybody, however, agrees with this approach, observing – not without reason – that an insurance contract resembles an all-or-nothing option, with the added
complexity that life and health insurance contracts are long term. As it happens, with nearly all long-term financial instruments, there are no active markets for insurance/underwriting commitments that can be used as the basis for deriving fair values.

- Since it is not always possible to derive reliable fair values due to the uncertainties involved in assessing future cash flows,
- This poses the challenge of the reliability of the financial statements, because of the values they reflect.

While, when there is no recent trading information on fair value, marking to model can fill the gap, it is no less true that it is still early days for the whole concept of fair-value accounting. In fact, as Warren Buffett, best investor alive today, recently wrote in a seminal article, marking to model degenerates into marking-to-myth. Some insurers indeed say that, for this reason, fair-value accounting of insurance contracts does not correspond to the currently applicable accounting treatment. They also add that insurance companies remain exposed to underwriting risks until such time as:

- The contract comes to an end, and
- Claims are discharged.

Exceptions made for value accounting of new contracts (or loans) have the nasty result of contradicting the more general basis of fair value accounting. The resulting challenge is one of comparability in consolidated financial reporting across different industries. For instance, companies in manufacturing industry, where sales are made before contractual delivery or fulfillment,

- Do not recognize profits when the contract is received.
- They do so over the period of project completion or after delivery of the finished product.

Another challenge lies in the fact that expenses relating directly to revenues should be included in the profit-and-loss account, in the corresponding periods. Extending this to insurance means that contracts should also be recognized over time as services are performed. Financial institutions are not allowed to recognize unearned interest on their financial transactions.

Still another concern of stakeholders, particularly investors and regulators, is that a recognition of profits on sales based on a fair-value approach, without fair values observable in deep and liquid markets, allows management the opportunity to massage reported earnings. This is particularly true if no proper rules are developed to provide reliable and comparable financial statements on a global basis – particularly so with instruments whose accounting does not benefit from tradition, the underwriting of operational risk being an example.

To avoid falling into a mess in the first place involves both rigorous research and stress testing. In 2000 FSA asked the British insurers under its authority to stress test their equity holdings, which is part of their economic capital. The stress threshold was set at 30% below market value and the results were comfortable. But then the stock market plunged, and several insurers were in trouble. They asked FSA to reduce the
stress test margin, and permission was granted. The market dropped still more, and FSA had to ease the marking to market criteria, leading The Economist to question the wisdom of establishing benchmarks which later on will not be observed as adversity hits – yet, that’s precisely the time when stress tests are most valuable.

In conclusion, not only the senior management of financial institutions must be keen on doing their homework, but also the rules have to be really international, covering a wide range of products, and not amenable to last-minute changes when adversity hits. Standards bodies and regulators should contribute the norms, and should observe them. They are all stakeholders in market discipline and the concept of compliance is applicable to everyone.

Notes

1 Journal of Applied Corporate Finance, 14/2, pp. 32–6, Winter 2002.
2 See also the reference to rogue trader insurance in section 11.3.
8 EIR, 4 October 2002.
9 BusinessWeek, 16 September 2002.
Role of rating agencies in the creditworthiness of insurance firms

12.1 Introduction

The more insurers expand their business frontier to include previously unfamiliar areas, the more important becomes the evaluation of their creditworthiness by independent agents, like well-established global rating agencies. Chapter 11 provided evidence to back this assertion, explaining why a measure of creditworthiness is particularly important as the scope of insurance operations is growing to encompass:

- Instruments for distributing risks, using the capital market, and
- Vehicles like alternative risk transfer solutions targeting operational risk.

Beyond this, the new capital adequacy framework by the Basel Committee on Banking Supervision has not only introduced operational risks beyond those classically associated to clearing, payments, and settlements, it has also brought the independent rating agencies into the picture in a big way. This is in connection to credit risk, but the reader will remember that insurance coverage is transforming operational risk into credit risk.

![Diagram of insurance company risks](image)

Figure 12.1 The array of risks demanding the attention of insurance companies
Because insurance companies have come forward offering to underwrite operational risks of credit institutions, they have become their partners in op risk control. But as Figure 12.1 shows, operational risks figure twice in the constellation of risks faced by insurers: They are technical risk (see Chapters 10 and 11) and part of other risks being taken. Insurers have to deal with operational risks from both sides:

- Both having these operational risks in their own back yard, since they are indivisible from their daily operations, and
- Insuring them, therefore being exposed to the probability of their happening somewhere else, with all this means in terms of adequacy of premiums and reserves.

For these reasons, Dr Thomas Hess of Swiss Re believes that insurers have to rethink and revamp their operational risk management. He considers risk control, in the whole range of activities shown in Figure 12.1, as a major operational risk for insurers and for all other financial firms. Insurers, he told me, should control assets and liabilities (A&L) in a proactive manner versus all their assured risks.

The insurers’ management of assets and liabilities is a prime domain of interest of independent rating agencies. A&L testing is very important because major cases of business interruption, like 11 September 2001, can turn even the most carefully crafted balance of A&L vs assured risks on its head.

Regarding the adequacy of assets to meet assumed risks, Swiss Re is very careful in its portfolio management, paying particular emphasis to matching assets and liabilities with risks being assumed. If and when (or where) they don’t match, insurers must make choices, often tough choices, regarding business products they support – to steer their portfolios. Then they should use financial instruments to reshape the risk position.

An example is to diversify the portfolio by getting into risks to which the insurer is unexposed. Prerequisite to this strategy, however, is top management’s decision on what the company wants to achieve in terms of risk and return. Only after this is done in a comprehensive manner, can an insurer rationalize on what they really want to do. This is a strategy independent rating agencies appreciate because it strengthens the insurer’s balance sheet.

For an insurance company fraud is also an item in the risk management list, particularly external fraud, which is a key source of losses in insurance. An example of operational risk relating to poor management is misjudging assumed risks because of not doing one’s homework in a thorough and consistent manner (see Chapter 11). Consistency involves four basic steps.

- Risk selection
- Risk pricing
- Terms and conditions
- Reserving assets to meet assured risks.

According to Dr Hess, operational risks exist in every one of these steps. The risks to which an insurance company addresses itself might have been selected wrongly, or they may be priced inadequately given the amount of assumed exposure. The question
Role of rating agencies in the creditworthiness of insurance firms

of contractual clauses is also crucial. If the insurers can influence the contract, then they can do a lot in terms of risk management.

12.2 Independent rating agencies, their business and their role

The term ‘nationally recognized statistical-rating organization’ (NRSRO) was coined in 1975. At its peak, the US had eight such organizations, but industry consolidation has cut that to four. Initially, what is now called independent rating agencies started as publishers of financial data. The eldest on record, Poor’s Publishing, was established in 1860. In 1941 it merged with Standard Statistics to form Standard and Poor’s, now a division of McGraw–Hill.

Historically, the second on record is A.M. Best. Incorporated in 1899, it focused on specializing in information, and later on rating, for insurance industry. Moody’s Investors Service was first established in 1900, ceased to exist during the market crash of 1907, and restarted its operations in 1909 – uninterrupted since then.

Other independent rating agencies came much later. IBCA was incorporated in 1978. In 1997 it merged with Fitch. Fitch Ratings is controlled by Fimalac, a French-capital holding. Other companies in the same holding are Duff & Phelps, Core Rating (specializing on corporate governance), and Thomson Bank Watch.

During the past two decades of the twentieth century, independent rating agencies have assumed increasing importance in rating companies and debt. The more markets globalized, the more independent rating became necessary. The 1999 new capital adequacy framework by the Basel Committee specifies that independent rating of creditworthiness is very important in capital allocation for credit risk.

The role of independent rating agencies fits between that of the regulators and the interests of the investing public. Regulators aim at orderly market behavior, market transparency, avoidance of systemic risk, and protection of investors, up to a point. But the explicit shareholder and bondholder protection is not part of their charter. Bondholder protection by means of credit risk grading is the work done by rating agencies, which address default probability of:

- Bonds
- Companies, and
- Sovereigns.

Regulators are increasingly interested in credit rating as attested through the new capital adequacy framework. In the G-10 countries the policy of regulators is that the market dictates the rating system. Independent rating agencies are the market’s agent. In some developing countries, particularly in Latin America, rating has become obligatory. Major rating agencies now expect that this may also happen in Eastern Europe, though not necessarily in Asia.

Indirectly, rating agencies help regulators in doing their job, because they know that if they go too far in market control they can wipe out entrepreneurial activity. Hence it is better to do the needed credit risk evaluation by proxy, while at the same time providing a level field in creditworthiness evaluation, capitalizing on the global role played by independent rating agencies.
Not everything has gone smoothly with independent rating of creditworthiness. For instance, the US Congress raised concerns about credit rating agencies after Enron’s 2001 failure, saying the agencies only reduced investment-grade ratings on the Houston energy-trading company’s debt a few days before Enron went bankrupt. As a result of these concerns, a corporate-reform bill adopted in July 2002 ordered the US Securities and Exchange Commission to issue a report, in January 2003, on rating agencies. This is focusing on areas such as:

- Conflicts of interest, and
- Barriers to entry.

At a day-long meeting at the SEC in mid-November 2002, regulators acknowledged that designations of nationally recognized statistical-rating organizations seem to limit the number of credit-rating agencies and may be a barrier for entry by other firms. Therefore, the Securities and Exchange Commission began hearings on the part played by credit rating agencies in capital markets.

But entry into the independent credit rating domain, even if free for all, would not be without challenges. One of the problems for would-be NRSROs is that the designation hasn’t been formally defined so that everybody knows what it means to be an NRSRO in terms of skills and obligations. In other terms,

- What it takes to become one, and
- What may be the formal appeals process for firms that are denied recognition.

Institutional investors and corporate-bond issuers at the aforementioned SEC meeting endorsed changes that would raise the number of rating agencies and shed more light on how credit analysts develop ratings. ‘We would definitely advocate more NRSROs,’ said Deborah Cunningham, of Pittsburgh-based Federated Investors. But in the opinion of Frank Fernandez, of the Securities Industry Association, building a reliable credit-rating business takes time, talent and money, and it is not clear whether investors want a panoply of ratings rather than reliance on a few proven providers.\footnote{1} For their part, rating agencies are refining their evaluation process to address new risks. Their measures include:

- Seeking additional disclosure, and
- Revising the way analysis of a business is incorporated in the consolidated rating of a parent.

They also are more careful in factoring the volatility of unregulated income streams into their rating, and in reflecting their propensity for expanding too fast. Since big name bankruptcies like Enron, Global Crossing, and WorldCom, regulators have uncovered the impact of deceptive trading, designed to inflate volumes and profits at corporate end, which unavoidably influence ratings. A good deal of doubt has been placed on their marking-to-market accounting which, for instance, considers up the value of a future contract (see Chapter 11).

The independent rating agencies themselves have been keen to improve their methods. An example is the use of what has become known as interactive credit rating, a two-way process based on:
Role of rating agencies in the creditworthiness of insurance firms

Discovery, and
Communication.

To a large extent, communication includes confidential information, and personal meetings held with the rated company’s senior management. Companies issue policies or issue debt, and independent agencies are asked to rate the firm and the debt. But while rating agencies may be commissioned by specific companies, in essence they believe that their ultimate client is the market.

Ratings influence in a significant way the interest companies have to pay for their debt. During the aforementioned mid-November 2002 hearings at the Securities and Exchange Commission, regarding nationally recognized statistical rating organizations, Standard & Poor’s said the power and energy sector experienced its sharpest credit slide in decades, and more declines and possible defaults were anticipated, with the energy industry having more than $90 billion to refinance by 2006.

As the independent rating agencies continue to downgrade the credit of energy traders, each downgrade makes it more expensive for energy firms to obtain financing and continue operations (see Chapter 4). From 1997 to 2001, the debt to total capitalization ratio at energy traders rose from 53 to 60%, and cashflow coverage of total debt fell from 23 to 16%. Since late 1999, S&P began downgrading the energy traders. The real crisis began when, a couple of months prior to its bankruptcy, Enron revealed some of its financial statements had been built on financial trickery. The agencies downgraded its credit to junk.

12.3 Insurance companies and independent rating agencies

There is no lack of independent rating agencies in the world, but not all have the same standing. The four entities operating on a global scale are Standard & Poor’s (S&P’s), Moody’s Investors Service, Fitch Ratings, and A.M. Best, which specializes in insurance. There are also smaller rating agencies rating public and private companies, sovereigns, bonds, asset-backed securities, commercial paper, and medium term notes.

The debt being rated may be corporate, municipal, government or other. The focal point is credit risk: the counterparty’s ability to pay interest and repay the principal. Ratings are typically subject to revision as, over time, the credit quality of counterparties might change dramatically. Table 12.1 shows the levels of credit ratings by S&P’s, Moody’s and A.M. Best.

- The rating system of A.M. Best has 11 graduations.
- Those of S&P and Moody’s have a scale of 20.

The granularity of these grading scales is part of the rating agencies’ strength. It documents that the latter have a major role to play in the insurance industry now, when, in most markets, insurance companies encounter difficulties due to solvency problems that are a challenge to their creditworthiness. If solvency is expressed in average capital funds as percent on net premiums, then:
Table 12.1 Long-term senior debt rating by S&P's, Moody's, and A.M. Best

<table>
<thead>
<tr>
<th>S&P’s and other agencies</th>
<th>Moody’s</th>
<th>A.M. Best</th>
<th>Credit message</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAA</td>
<td>Aaa</td>
<td>A++</td>
<td>Very high quality</td>
</tr>
<tr>
<td>AA+</td>
<td>Aa1</td>
<td>A+</td>
<td>High quality</td>
</tr>
<tr>
<td>AA</td>
<td>Aa2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AA–</td>
<td>Aa3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A+</td>
<td>A1</td>
<td>A-</td>
<td>Good payment ability</td>
</tr>
<tr>
<td>A</td>
<td>A2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A–</td>
<td>A3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BBB+</td>
<td>Baa1</td>
<td>B++</td>
<td>Adequate payment ability</td>
</tr>
<tr>
<td>BBB</td>
<td>Baa2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BBB–</td>
<td>Baa3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BB+</td>
<td>Ba1</td>
<td>B</td>
<td>Uncertainty in payment ability</td>
</tr>
<tr>
<td>BB</td>
<td>Ba2</td>
<td>B–</td>
<td></td>
</tr>
<tr>
<td>BB–</td>
<td>Ba3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B+</td>
<td>B1</td>
<td>C++</td>
<td>High risk operations</td>
</tr>
<tr>
<td>B</td>
<td>B2</td>
<td>C+</td>
<td></td>
</tr>
<tr>
<td>B–</td>
<td>B3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CCC+</td>
<td>Caa1</td>
<td>C</td>
<td>Vulnerability to default</td>
</tr>
<tr>
<td>CCC</td>
<td>Caa2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CCC–</td>
<td>Caa3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CC</td>
<td>C</td>
<td>C–</td>
<td>Bankruptcy likelihood or</td>
</tr>
<tr>
<td>C</td>
<td></td>
<td>D</td>
<td>other major shortcoming</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Solvency ratios have declined in the past few years,
- Exits by insurance companies reduced capacity, and
- Non-life capital funds decreased by $90 billion in the aftermath of 9/11.

A perception of financial staying power in insurance, from outside the firm, is given in Figure 12.2, which is based on the result of a meeting with Swiss Re. Other sources indicate that among insurance companies underwriting results did not improve significantly, even if premiums increased after 9/11. At the same time,

- A sharp stock market decline hit hard the portfolio of insurance companies, and
- Default rates on corporate bonds rose from less than 1% in 1994–97 to 5% in 2000–2002.

As a result of these happenings, independent rating agencies downgraded insurance companies, informing investors on impending risks. One of the findings in my research has been that solvency is more important than liquidity in the insurance business.
‘Our salient problem is not liquidity, but solvency,’ said the director of research of a major insurer. To minimize credit risk this company’s portfolio has 70% government bonds. Regulatory capital in insurance is:

- 4–5% of assets in life insurance, and
- 15% of revenue in non-life insurance.

Beyond this comes the insurance company’s ability to raise funds in the capital market and through counterparties. Into this ability enters the evaluation algorithm of independent rating agencies, though the main object of analysis is the claims-paying ability of the firm. This is financial strength rating, and it has similarities with rating studies targeting the issuance of debt. According to A.M. Best, the criteria are:

- Business profile
- Management and strategy
- Operating performance
- Investment portfolio, and
- Capitalization.

Business profile examines market position, competition, product mix, distribution channels, and geographical diversification. A management and strategy evaluation looks into overall corporate strategy, management experience, financial strategy, and acquisition or disinvestment strategy.

Operating performance targets the analysis of total bottom line results, as well as technical profitability in underwriting. What investment portfolio analysis is after has
been discussed in Chapters 10 and 11. The study of an insurance company’s capitalization looks into solvency, liquidity, reinsurance protection, and reserves.

The criteria used by Standard & Poor’s and Moody’s in rating insurance companies are shown in Box 12.1. These factors are always viewed and analysed within a given industry, level of market risk, and regulatory framework. Rating agencies are usually very careful in their evaluation of credit risk as they know that every time they assign a rating their name, credibility and integrity are on the line. The investment community would not permit slippage; its scrutiny of the ratings is almost constant. At the same time:

- Rating agencies must cope with the fact that the demand for professional credit analysis has grown explosively, and
- Globalization places particular strains on the rating process because it brings into the picture many unknowns having to do with different jurisdictions, regulations, and accounting standards.

<table>
<thead>
<tr>
<th>Box 12.1 Criteria employed by Standard & Poor’s and Moody’s in rating insurance companies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Industry risk</td>
</tr>
<tr>
<td>Management and corporate strategy</td>
</tr>
<tr>
<td>Business review</td>
</tr>
<tr>
<td>Results from underwriting</td>
</tr>
<tr>
<td>Investment policy and results</td>
</tr>
<tr>
<td>Interest rate risk management</td>
</tr>
<tr>
<td>Capitalization</td>
</tr>
<tr>
<td>Liquidity</td>
</tr>
<tr>
<td>Capital and capital requirements</td>
</tr>
<tr>
<td>By Moody’s</td>
</tr>
<tr>
<td>Competitive situation</td>
</tr>
<tr>
<td>Regulatory trends</td>
</tr>
<tr>
<td>Adequacy of equity capital</td>
</tr>
<tr>
<td>Investment risk</td>
</tr>
<tr>
<td>Profitability</td>
</tr>
<tr>
<td>Liquidity</td>
</tr>
<tr>
<td>Group interrelationships</td>
</tr>
<tr>
<td>Products and distribution channels</td>
</tr>
<tr>
<td>Quality of management and organization</td>
</tr>
<tr>
<td>Other crucial criteria are:</td>
</tr>
<tr>
<td>spread of risk</td>
</tr>
<tr>
<td>loss reserves</td>
</tr>
<tr>
<td>solvency margin</td>
</tr>
<tr>
<td>reinsurance program</td>
</tr>
</tbody>
</table>
There is a difference in procedure between new ratings and the revision of old ones. First time ratings require fairly extensive work starting with preliminary discussion, following up with scheduled meetings and submitting advance background materials. This preparatory activity may take about a month and it is followed by:

- Analytical meetings with the rated company
- The agency’s own credit analysis, and
- Rating committee meetings.

In all, some two or more months of work are necessary before the issuer and credit markets are informed of rating and its justifications. Rating reviews are needed if major changes occur in an issuer’s near-term or long-term credit outlook. Rating agencies place the issuer’s ratings under review, with contributing factors such as:

- Shifts in the industry
- Emerging technologies and their impact
- Government intervention
- Regulatory changes
- An evolution in macroeconomic variables.

All types of significant events are examined to determine the degree to which a key factor may or will affect the operating position of the company, and its future ability to meet its commitments. Default statistics are part of this picture and so is every other factor helpful in providing investors and issuers of debt with a factual and documented rating.

12.4 Qualitative and quantitative approaches to rating insurance companies

Commercial banks and insurers attract a great deal of interest in rating by independent rating agencies because, as shown in Figure 12.3, they muster among themselves about 50% of all financial institutions’ assets (statistics based on American data). Other entities, too, are now rated by independent agencies. An example is not-for-profit foundations.²

The credit rating is typically a probability. It measures the likelihood that the issuer will default on the security over its life. This may depend on the instrument, the time horizon, the issuer’s financial health, and willingness to perform. Such ratings incorporate an assessment of the expected loss should a default take place. In a way, the work of the analysts employed by the rating agencies is not very different from that of financial analysts addressing themselves to equities, but there is one major exception:

- Equity analysts approach their mission from the standpoint of shareholders.
- Rating specialists particularly look after the interests of bondholders and other lenders.
As such, credit rating experts tend to have a longer time horizon than equity analysts as they investigate both business risk and financial risk, while they study the nature of each problem. Rating agencies meticulously collect annual and interim reports as well as other public data on issuers, recalculating this data to adjust for differing accounting methods and other factors. Let’s keep all this in mind when we talk about how insurance companies are rated. A fine approach to credit rating will look at:

- Premium risk
- Reserve risk
- Credit risk by reinsurer
- Credit risk by bond underwriter
- Investment risk.

It will also use market profile criteria. At A.M. Best these include: competitive advantages or disadvantages, business mix and diversification, understanding the riskiness of business written, quality of distribution network, and peer-to-peer comparison. Much of this is qualitative information. Capital strength is quantitatively expressed in reserves, and retrocession/protection.

Ratings benefit from sensitivity analysis, including leading indicators of future balance sheet as shown in Figure 12.4. While it is very important, traditional solvency is not a sufficient measurement. A.M. Best looks at risk-adjusted capital structure, with capital strength evaluation involving:

- Best’s Capital Adequacy Ratio (BCAR, see Chapter 10)
- Risk-Based Capital (RBC)
- Reinsurance Protection
- Reserve Adequacy, and
- Future Needs (growth, competitive positioning).
Operating performance is another major criterion, expressed in financial strategy, management quality, earnings generation (underwriting and total), investment philosophy, forward-looking earnings drivers, earnings measurements and targets, earnings quality (sustainability/volatility).

Whether the rating concerns an entity or an issue – and whether that entity and that issue is national or global – the rating is an opinion on future ability and legal obligations: for instance, the financial responsibility of an issuer to make timely payments on a given fixed income security; or the ability of an insurance company to honor the policies it has underwritten.

Gathering prospectuses, examining trust deeds, and indentures or other legal information relevant to particular securities or entities is only part of the problem. As we saw in section 12.3, valuable information is obtained through in-person meetings with company management which helps to understand current and upcoming challenges as well as strategies for the future.

A rating research team typically includes a lead analyst, who is a specialist in the issuer’s industry, the director for the industry sector, country and regional specialists, accounting and other experts. In the insurance industry this work becomes increasingly complex because of the polyvalence of rated entities, as insurance companies compete more energetically, in more markets. An example is Munich Re which became:

- A major life insurer, with 91.7% in Ergo
- An asset manager, with $120 billion in its books
- A banker, with 25.7% in Hypovereinsbank
- A banker, with 10.4% in Commerzbank, and
- A direct vendor of reinsurance to corporations.
Like any other insurer Munich Re is exposed to operational risk. One case alone, 11 September 2001, cost the company an estimated $1.9 billion. This is said to be the largest ever insurance loss. The challenge independent rating agencies face is to answer in a reliable way the query: Has the insurer the assets and solvency to absorb such shocks? Answers to such questions are usually confidential, based on selected criteria.

12.5 Information is the critical product of rating agencies

As section 12.4 has demonstrated, both qualification and quantification are integral parts of an analysis for credit rating. The evaluation of creditworthiness is not based on a pre-defined set of criteria, like ratios, which work in a mechanical way. It is the product of a comprehensive study of each individual entity, or debt issue, and it is expressed in a grading scale which includes measures of:

- Management skill
- Debt coverage
- Level of gearing
- Cash flow, and
- Risk control.

Credit rating is the output of experts who work as the distillers of information. This requires imagination, experience, and calculation. People have plenty of imagination but their ability to calculate is not outstanding. To counterbalance their limitations people group into teams, teams group into organizations, and organizations undertake analytical projects.

The rating agencies’ teams must work diligently, but also have a questioning mind. This precondition leaves no room for bureaucracy. But as the case of Andersen, the auditors, has shown, it does not necessarily exclude conflict of interest. Time will tell. What can be stated for sure at this moment is that:

- Rating agencies cannot afford to let paperwork proliferate
- Or, clerical forces surpass productive agents in number.

This puts them at a different setting than bureaucracies where as much as half the cost of administering some companies can be charged against the processing of information, and the results are not necessarily good. The work done by rating agencies capitalizes on the fact that free markets require information in order to handle increased amounts of liabilities, and this process in itself generates more information that needs to be exploited.

Traditional information processes are the least satisfactory in respect to forecasting. Credit ratings are not a forecast, but transition matrices, and a steady upkeep makes them some kind of prognosticators. Modeling real life situations – in this case creditworthiness and its evolution – also helps.

- Models can comprehend a situation but they cannot conceive it.
- Experts must supplement the conceptual factors through simulation.
Role of rating agencies in the creditworthiness of insurance firms

Simulation is a working analogy. When analogous systems are constructed, or found to exist, then experimentation on one of them can lead to the investigation of others. Figure 12.5 presents the pattern resulting from Monte Carlo simulation, in logscale, of probability of exposure due to operational risks. The fine grain, 20-level classification of creditworthiness which was shown in Table 12.1, has precisely the objective of informing the reader on test results. Provided:

- Ratings have been constructed with due care, and
- Their accuracy has been thoroughly tested.

Under these conditions, models are very helpful in providing factual and documented results. One of them are the power curves used by Moody’s as predictors of a company’s default. Power curves are based on statistical inference. They reflect chosen critical factors that are able to tell how well a given organization manages its business. Examples are:

- Profitability
- Solvency
- Liquidity
- Assets, and
- Sales growth.

Through simulation we target a few, but focused answers from a large amount of data, or clearer answers from limited, sometimes fuzzy data. The former is known as
data reduction; the latter as data generation. For a data reduction example take an earth satellite that is constantly beeping out information on conditions in space as it meets them in subsecond intervals. A computer absorbs this tremendous amount of information, collates it, processes it, and finally reduces it to a meaningful pattern.

For data generation, consider the computer at the missile test center. It receives rather limited information on the path of a fired missile and on the basis of this information forecasts its exact trajectory. That is, it generates data on the future behavior of the device, and if this behavior is forecast to be harmful in any respect to its creators, the computer would generate a signal that would cause the missile immediately to self-destruct in the air.

Credit rating involves both data reduction and data generation, which is also true of many other business activities. Research and analysis is instrumental in strengthening a company’s balance sheet. An example of this proactive approach is that of operational risk valuation studies in ship insurance. The case study on Lloyd’s in section 12.7 is based on a personal meeting with underwriter Peter Chrismas. I was impressed by the depth of his analysis (see sections 12.6 and 12.7).

The analysis done by Lloyd’s hull insurers concentrates on management risk and technical risk. So do the credit ratings of insurance firms. In both cases, trend lines help. When they are well-documented, the results of analysis condense a long experience into a brief pattern. This is shown in Figure 12.6 through half a dozen characteristics curves whose cumulative effect defines estimated default frequency.

For practitioners, a pattern or a symbol is a most valuable snapshot. In terms of credit rating (see Table 12.1), the triple A (AAA or Aaa) represents gilt edge credit quality. To the professional, it means that the security ranks well above all other classes in margins of safety against default, even under severe economic conditions. By contrast, the C class indicates a very high level of credit risk.

Neither in the main grading classes nor the subclasses are ratings expected to go up and down with business cycles, supply and demand, or the last quarter’s earnings report. While dramatic short-term events upset a rating, emphasis is placed on the longer term. The ratings in Table 12.1 are intended to measure long-term risk, hence the analytical focus is on fundamental factors that will drive each insurer’s longer-term ability to meet their obligations.

As the preceding chapters brought to the reader’s attention, algorithms expressing crucial variables are established and tested by mining rich databases that contain information permitting analysis of the pattern of defaults, and document behavior of underlying factors. Variation in one or more factors retained as crucial is used for experimentation. An example is the result of Monte Carlo simulation on probability of exposure due to operational risks, which we have seen in Figure 12.5.

Regulators look favorably on the development and use of credit risk models, as documented by the internal ratings-based (IRB) method by the Basel Committee, and its contribution to estimating capital requirements. Credit risk models should also be developed for a better management of the financial institution, by enabling an appreciation of exposure due to credit risk, market risk, or operational risk at board level and by senior management.

Like market risk models and statistical quality control charts, credit risk models can be instrumental in promoting internal control. The same is true of operational risk models. As an executive of the European Central Bank was to say: 'Measurement units
Figure 12.6 Trend curves of important ratios that can serve as prognosticators of default (note the differences). (*Short term proxy of leverage is the acid test)
and control procedures are two of the challenges lying ahead.’ This is true all over business and industry. Section 12.6 takes the shipping business as a case study.

12.6 Analytical studies are the way of being in charge of risks

Just as banks must do appropriate research on credit rating prior to giving major loans, the best managed insurers must study what they can expect in terms of risk and return prior to underwriting a policy. It serves little to become an aggressive insurer without lots of homework to back up one’s moves regarding:

- Risk being assumed, and
- The actuarial view of fair premium.

A good deal of the research associated with this homework is internal to the bank or the insurer. But, as banks gain from analysis done by independent rating agencies, insurers benefit from companies specializing in quality assurance. Veritas, the Norwegian certification agency, is a case in point.

Since the mid-1960s, nearly four decades ago, Veritas has been a leader in simulation (see section 12.5). Prior to that date its ship inspectors, like those of its competitors, were going through an itemized list of check-ups on a ship’s seaworthiness (see section 12.7 for a list of crucial factors). This has been classically done on a standalone, item-by-item basis, but in a major leap forward in quality assurance Veritas developed a simulator which enabled it to:

- Take a holistic view of quality factors, leading to a factual and documented certification procedure.
- Develop a rich database on defects for all items in the analytical checklist, and their correlation.
- Experiment through simulation in order to uncover latent defects and focus on new leads, therefore making certification so much more effective.

Each of these three points is of capital importance to operational risk control. This is the way we should be working to improve our method and our deliverables. Yet many companies, including insurers, are slow to adapt to experimentation. This is counterproductive because it opens for them a mare’s nest of surprises. By contrast, those who take research seriously hold the upper ground – as the following case study demonstrates.

In the late 1980s and early 1990s, London’s Lloyd’s has suffered some major setbacks because its risk and return evaluation was wanting. But times have changed. Marine insurance, which is the subject of this and the following sections, has been traditionally dominated by Lloyd’s syndicates. In 2000, out of a total market of £4.3 billion in gross premiums,

- Lloyd’s had a share of £2.5 billion
- Other insurance companies, a little over £1.1 billion, and
- The Marine Protection & Indemnity (P&I) Clubs, nearly £600 million.
The Marine P&I Clubs are mutual insurance associations of shipowners and charterers, originally founded in England in the nineteenth century. Today, in the liability sector they have a significant role, but the leading player is still Lloyd’s in spite of the overall reduction in its syndicates from about 400 in 1991 to 86 in 2002 – following the crisis that hit Lloyd’s in the early 1990s.

Other insurance companies, too, went through consolidation, examples being the 1996 merger of Royal Insurance and Sun Alliance; 1998 merger of Commercial Union, General Accident, and Norwich Union – followed in 2000 by the merger of the resulting entity with CGNU; as well as the takeovers. For instance, in 1986 Cornhill was taken over by Allianz; while in 1999 Guardian Royal Exchange was purchased by AXA.

The message to retain from these events is that they reduced the involvement of the London market in insurance. The consolidation at Lloyd’s, however, proved to be much more radical than the aforementioned mergers and acquisitions. While many syndicates left, the remaining Lloyd’s agents:

- Continued the concentration process,
- But also improved their risk management methods introducing urgently needed analytics.

To appreciate this change in culture and in management policy, it is helpful to recall that by 1990 – before the majority of huge losses struck – Lloyd’s had evolved into a complex structure. The hubs were the 400 syndicates, each a relatively small unit managed by an active underwriter who was taking on insurance risks. In each syndicate, managing agents were:

- Establishing policy guidelines, and
- Supervising underwriting activities.

The capital required for the conduct of underwriting was provided by names. Till 1993, the names were the exclusive source of funds to Lloyd’s, a tradition dating back to 1720 after a law enacted when the South Seas Bubble burst and many people, including the likes of Isaac Newton, lost lots of assets. As private individuals, the names were in fact the bottom of the food chain of Lloyd’s underwriting, assigning the syndicates unlimited security. By contrast,

- Policy and the underwriting of huge risks was done by the managing agents and the lead underwriters.
- The losses that accumulated have shown that many agents and underwriters did not have their eyes wide open when taking risks.
- Lloyd’s was underperforming other insurers, and large settlements acted as a substantial drag on the names’ assets.

Over the years risk management had become lax and this led to the catastrophes which hit Lloyd’s and the names a decade ago. In the aftermath, some of the consolidated syndicates got their act together and restructured their risk management. They instituted analytical studies, and investigated the roots of underwriting risk.
This is the subject of the case study presented in section 12.7, as it appeared to myself and Peter Chrismas, Hull Underwriter, Marine, Aviation Transport, and Sales Division, Lloyd’s.

12.7 Operational risk with marine insurance underwriting: a case study

One of the underwriters’ steady concerns is premiums or rates. In some markets, like energy, rates have increased dramatically in response to losses – 1000% on some lines in the 2000 to 2002 timeframe (see Chapter 4). Marine hull rates increased much less, though in 2001 they did grow by 20–30%, as high value risks with ferries, oil tankers, and container vessels, expanded. Even so, premiums have failed to adjust to meet risk increases while shipowners responded that they could not afford increased premiums because:

- There are more ships operating on slender margins, and
- Insurance is a large share of their operating costs.

Neither of these points contributes to risk reduction, just like a junk bond will not turn into AA rating because high interest rates ravage the company issuing it. Indeed, hull underwriters say that if policyholders want a quality product they must pay for it. Insurers cannot keep selling a product at a price that is not viable.

In the opinion of underwriter Christine Dandridge, for instance: ‘If shipowners don’t have the cash [to pay increased premiums], deductibles can be increased. This will change the loss frequency (distribution). Insurers will provide catastrophe cover only.’ According to other opinions, the quality of underwriting itself must improve. This is a basic objective of the work done by hull underwriter Peter Chrismas.

Basically, just like any other commodity, insurance rates are subject to supply and demand, and marine insurance has a cyclical nature. Players withdraw following losses, and reappear when profits show up, thereby fanning cycles. Hence, one of the problems with correctly pricing risk is the lack of logic characterizing providers of capital, who are no more the captive names – Lloyd’s former financial strength.

Another factor to keep in perspective is that explained in section 12.6: the behavior of investors and underwriters has been classically characterized by too much ‘seat of the pants’ decision-making, calling into question the maintenance of viability of the marine insurance market. All this means that some branches of insurance, which is a medium- to long-term business, have been marred by short-term decisions:

- When there are profits, capital comes in and premiums fall.
- When there are losses, capital moves out and premiums rise.

But the likelihood of catastrophic events does not change because of this behavior by investors. What syndicates can do, and should do, is to significantly improve their own management, rigorously analyze their business, identify and classify the operational risk factors (see Chapter 2), and develop models that assist in improving the results by an order of magnitude. Box 12.2 shows 20 key factors entering the technical risk valuation model for ship insurance.
Role of rating agencies in the creditworthiness of insurance firms

Box 12.2 Twenty key factors entering the op risk valuation model for ship insurance

- Ownership/management and ability to manage risk
- Current shipowner's credit rating
- Previous shipowner(s)
- Flag
- Type of ship
- Classification society
- Age of ship
- Main engine
- Power, in relation to size of ship
- Bedplate, crankshaft, etc. (relative to similar problems in similar vessels)
- Percentage of time within warranties (i.e. trade of the vessel)
- Past casualties (if any)
- Port state detention (if any)
- Cargo or passengers (certain trades/cargoes, such as logging, create greater risks)
- Service pattern (ports vs high seas)
- Liner trade or tramp
- Charter: spot or time
- Pollution at sea or harbor
- Risk scoring and audit trail
- Insured value

In No. 1 position in Box 12.2 is ownership/management. Experience suggests that the majority of casualties are due to human error and at its root is management risk. Its origins start at the top of the organization and the causes seep down all the way to the captain and the helping hands. While most accidents happen in entering and leaving ports, the direct responsibility of top management is always at stake. The principle is that:

- If the valuation by the owner is relatively low,
- Then there is something wrong in the way of personal accountability.

Flag is the No. 4 technical risk factor in the list presented in Box 12.2. Figure 12.7 shows much more than the fact that gross tonnage is unevenly distributed among 20 different flags from Panama to Great Britain. The family of curves distinguishes the age of ships. The Lloyd’s study focused on six age brackets: 25+, 20–24, 15–19, 10–14, 5–9, 0–4, but Figure 12.7 shows only two age brackets: ships 9 years old or newer and the others.

An interesting documentation provided by the study of Peter Chrismas is that Panama not only has under its flag the largest share of global tonnage, about 22% of
the total; it also has the newest fleet. Other things being equal, this is most significant in terms of risks assumed by the insurance underwriter, because percentage of casualties between age groups varies quite significantly.

Age of ship is the No. 7 risk factor in Box 12.2. Figure 12.8 shows that ships which are up to 9 years old have a much smaller share of casualties than the rest. The share

![Figure 12.7](image-url)
Figure 12.7 Gross shipping tonnage (more than 500 GT) by flag. See text for further details

![Figure 12.8](image-url)
Figure 12.8 Percentage of shipping casualties by age group since 1994
of casualties increases in the bracket of 10–14-year-old ships, then it jumps up with ships 15 years or older.

Interestingly, past the age of 25 the casualties curve bends, as shown in Figure 12.9. The same is true of the frequency of port state detention. Ships older than 25 years, which are museum pieces like the Schiller and Gotthard steamships on Lake Lucerne, are very carefully maintained by their owners. Therefore, their failure rate drops dramatically. The inverted U-curve provides food for thought.

Reliability studies have not yet entered ship insurance as a determinant factor, yet they can make a major contribution to insurability. To be effective, reliability should address both the drafting board of ships and their maintenance. Best results depend on engineers who have oriented their thinking toward sound fundamentals of reliable design.

- A system with a large number of simple items is preferred to one with a smaller number of complex items (see Chapter 5).
- Overall, reliability decreases sharply with increasing complexity; roughly, it is inversely proportional to the square number of components.
- Weak points in the system (like the hull of tankers) should be reinforced with built-in redundancy.
- Built-in absorbing points (limit switches, fuses, overload clutches) act as barriers to trouble.
- It is much more difficult, expensive, and time-consuming to increase the level of component reliability in the region of 99.9% than in the region of 99% or 90%.

Unnecessarily high reliability may be as bad in terms of final results as low reliability. The German V-2, in World War II, achieved what was then a high reliability of 78%. Three thousand were test-fired over a period of four years – but the greatly improved model was delivered too late to be of strategic value.
Chapter 5 has brought to the reader’s attention the reliability equation, as well as mean time between failures (MTBF), mean time to repair (MTTR), and the concept of availability. It has also stressed the point that if, for example, a component must have a 95% chance of lasting 3 hours, then T for that component must exceed 58 hours. This means that reliability of individual components must be far greater than required reliability for the overall system. Statistical theory shows that if every component of a 500-component system is 99% reliable, the system will be only 1% reliable. This applies equally to ships, aircraft, and electronics.

A reliability study by Hughes Aircraft has shown that failures of particular airborne radar equipment closely approached reliability’s negative exponential curve. Studies at Vitro Laboratories, based on a large number of shipboard electronic equipment failures, give a plot showing a T value of 165.8 hours and a corresponding 95% probability of about 8.4 hours.

Regarding maintenance, a useful checklist comes from a survey conducted by Sandia Corporation, Albuquerque, New Mexico. Sandia studied suppliers’ plants to determine whether or not manufacturing processes were adequate to assure a product of satisfactory quality and reliability. Reasons believed responsible for processing failure are listed in Table 12.2 in decreasing order of occurrence, not necessarily in order of importance. Percentages figures refer to observed infractions as compared with total situations where infractions were possible.

Reliability should be the alter ego of hull and machinery insurance. As these examples help to demonstrate, underwriting is not a matter of black and white but shades of grey. Because shipowners operate in a commercial environment they are faced with compromises. Therefore, through analytical studies, insurance underwriters must address the likelihood of catastrophes due to technical risks:

- Appreciating how good ship owners manage their risk
- Mining databases, using statistical evidence, and doing reliability studies, and
- Thinking quite a lot on how different risks relate to one another.

<table>
<thead>
<tr>
<th>Reason</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test equipment or gauges not regularly compared with standard</td>
<td>72%</td>
</tr>
<tr>
<td>Inadequate identification of control of material in process</td>
<td>52%</td>
</tr>
<tr>
<td>Inadequate inspection records and reports (including information on process improvements)</td>
<td>36%</td>
</tr>
<tr>
<td>Sampling plans not adequate – plans not statistically sound, or plans that did not allow for human judgment error</td>
<td>25%</td>
</tr>
<tr>
<td>Lack of materials-testing for conformity and acceptance</td>
<td>25%</td>
</tr>
<tr>
<td>Materials used before certification was available</td>
<td>25%</td>
</tr>
<tr>
<td>Inadequate inspection instructions – important characteristics not inspected or improperly inspected</td>
<td>18%</td>
</tr>
<tr>
<td>No regular use of inspection reports to improve process</td>
<td>18%</td>
</tr>
<tr>
<td>Production personnel inspecting their own work – lack of separate inspection</td>
<td>14%</td>
</tr>
</tbody>
</table>

Table 12.2 Where to look for unreliability
Analytical studies are important not only to sharpen the underwriter’s judgment and protect the investors, but also because of the trend to securitization of ship insurance and the role capital markets would play. Reliability studies in shipping may well be the counterpart of credit rating. As Peter Chrismas was to suggest, in future ship owners will be faced with a two-tier market:

- Big operators, who will most likely transfer risk in different fashions, such as alternative risk transfer (see Chapter 11), and
- The smaller to medium-size companies, which will continue to buy insurance in the traditional fashion.

The role of the broker, too, will change. He will become a consultant for a range of maritime requirements, including insurance. Also, in all likelihood, marine insurance companies will act as aggregators of risk and they will securitize their products.

For all the reasons outlined in this section, not only insurers but also shipowners should get busy with analytics. Successful securitization requires first class professionals, plenty of reliable statistics, powerful mathematical models, and a significant amount of experimentation.

In conclusion, like so many other insurance underwriting sectors, marine insurance is essentially applying knowledge, statistical evidence, prognostication of events, and common sense. The problem with common sense is that it so widely distributed that each one of us has very little.

Notes

6 Insurance Times, 14 November 2002.
7 D.N. Chorafas, What You Should Know About Designing for Reliability, Product Engineering, 10 November 1958. The statistics don’t change because 45 years have gone by – and it is surprising such studies have not yet found their way into shipping.
13 Tort is technical and operational risk of insurers

13.1 Introduction

Tort means any private or civil wrong, including damage or prejudice for which damages may be claimed – other than breach of contract. All injuries done to another person or legal entity are torts, unless there is some justification recognized by law. Because tort litigation can cripple companies, tort reform has been a continuing policy issue for the past ten years or so.

- Insurers, many businesses, non-trial lawyers, and certain consumer groups are for reform.
- Trial lawyers, labor, and opposing business groups are defending the status quo in tort legislation.

As a legal issue, tort is operational risk. The twist is that in many old and new tort events, experts find it difficult to distinguish clearly between those cases that have scientific foundation, and those cases that have none. Yet settlements in hundreds of billions of dollars have taken place for tobacco and asbestos (see sections 13.4 and 13.5) – and bigger ones may be coming with 9/11.

At root, the law of tort overlaps to some extent other branches of the law; for instance the law of contract. The concepts of tort and contract, as we now understand them, would have conveyed little of their meaning to the early lawyers who thought in terms of actions rather than in terms of substantive rights.

- The early remedies for tort were chiefly trespass upon the case followed, generally, by limited action.
- The early remedies for breach of contract were actions of debt, of covenant, and detinue, which was very similar to debt but also closely related to tort.

Because many cases involving tort are open to class action, and juries are inclined to award tens and hundreds of millions or even billions of dollars in settlements, I strongly recommend using drills in connection to the evaluation of tort liability, as well as of the financial aftermath of major changes in legislation and regulation. Had Sealed Air done such a drill, it might not have had to pay a third of its equity as settlement (see section 13.4).

The case of asbestos as king-size operational risk documents the wisdom of being very, very careful. Through many lawsuits, asbestos litigation has led to the
bankruptcy of more than 70 firms. The number of jobs lost due to these lawsuits is thought to be 60,000, and according to some estimates the cost of associated court actions could reach $200 billion.

Asbestos litigation is one of the best examples not only of tort, but also on its spillover. Slowly, such litigation has spread from firms involved directly in the mining of asbestos or the manufacture of and sale of asbestos-based products, to others that had only some dealings with asbestos producers, and therefore peripheral involvement.

Interests embedded in current tort legislation see to it that change in the letter of the law will not come easily. Often, the results of a major change – legislative, judicial or regulatory – are not possible to predict because the consequences are not transparent when such change is contemplated. Yet under conditions of historical precedence or hypothetical statements about the after-effect of critical change(s), analytical studies can be instrumental in revealing the more likely outcome.

An example where tort reform was enacted because of an expected torrent of litigation has been liability for year 2000 (Y2K) problems (see section 13.3). This was preceded by challenging studies evaluating extreme versus normal conditions; the spikes to be expected from the former documented the wisdom of legislative change by the US Congress.

13.2 Why tort reform is necessary

Because our society is litigation prone, and the probability of court action has significantly increased over time, tort reform is necessary to tame lawsuit abuse. As Chapter 3 documented, legal risk is operational risk; lawsuit abuse is its spike considered by experts to be as great a threat to investors as the accounting practices of the once mighty Houston energy trader Enron. During the year 2000 election campaign, the then aspirant George W. Bush vowed to push through Congress legislation that would:

- Cut excessive legal fees
- Punish frivolous litigation
- Deter bad-faith lawsuits, and
- Force losers to pay, under certain circumstances.

But two years down the line, by January 2003, lawyers and analysts suggest that only piecemeal reforms have a chance of passage through Congress. One necessary measure, the same experts say, should aim to limit the number, and impede the progress, of class action lawsuits. This can be done by forcing them out of state courts and into the federal system, which has tougher standards. In February 2002 the US Chamber of Commerce called for the passage of such legislation, saying that abusive and frivolous lawsuits:

- Impede job creation, and
- Stunt economic growth.
However, people and companies opposed to tort reform counterattack by asking for a different measure, which will increase operational risk by extending litigation to an area that has been so far immune, namely allowing patients to sue health maintenance organizations for coverage decisions.

Those in favour of tort reform speak of a sound measure the Bush Administration has taken, which amounts to a major civil justice reform in American history. This is the establishment of a government fund to compensate the victims of the events of 11 September 2001 at the Twin Towers and the Pentagon (section 13.5 describes the second implementation of this concept). This fund has been a unique experiment in victim compensation. Rather than leaving victims to the vagaries of the much maligned system of tort; or personal injury law, which could easily have bankrupted defendants such as airlines, airports, and others targeted with liability, the government set up a social insurance fund. To claim from it, victims must give up the right to sue.

Some experts suggest that this US government-sponsored fund reflects an implicit recognition of the flaws of civil litigation, which is intolerably slow and capricious; it cheats some of the victims; and feeds the greed of others. Over and above that, critics maintain, current tort legislation is inefficient, too often enriching lawyers at the expense of their own clients.

Many people now say that the events of 9/11 provided trial lawyers with the opportunity to find new ills, and causes of action. Others are producing documentation that with both new and old tort events, even the experts find it difficult to distinguish too clearly between ills that have scientific foundation and those that have none – while the tort roster continues to grow.

In the case of 9/11, for example, potential litigation includes wrongful death claims from those in the aircraft, and injury or death claims from those on the ground. Potential spillover could see suits levied against the architects, engineers, and builders for presumably faulty design and construction (see also Chapter 14 on operational risk from terrorism).

The list of injured parties seeking compensation may not end there. Other suits could include hundreds of thousands of people exposed to concrete dust, possibly laced with some asbestos. It is therefore understandable that the events of 9/11 galvanized, in some quarters, opposition to the current law, and led to determination to push for tort reform through legislation.

One particular subject on which worst case drills for tort reform should concentrate is that an explosion of liability from an event the size of 9/11, which is affecting so many people, is essentially uninsurable. Until mega-risk of these proportions came into the picture the insurance industry worked on the premise that liability risk is inherently insurable – but the conditions seem to have changed.

The hypothesis of insurability remains valid if, and only if, tort awards and settlements are of manageable proportions, and they exhibit a low correlation among themselves. While there is really no clear line between big risk and mega-risk, as I have outlined in Chapter 10, losses of $1 billion to $2 billion seem to be insurable by a single company, or an order of magnitude bigger than that by the insurance industry in unison. By contrast, losses of tens or hundreds of billions of dollars are not.

The experts opinion can be summarized as follows. A California earthquake, whose damages may run up to $2 billion was insured in the past by Lloyd’s and more
recently by Berkshire. However, prior to 9/11 Warren Buffett, CEO of Berkshire, said that when the current policy expired he was not going to renew it, because insurance premiums have dropped significantly and the earthquake is not aware of that fact.

Buffet's justification for insuring a mega-risk, like the California earthquake, has been that, in a worst case scenario, the catastrophe would represent 1–2% of Berkshire assets. But what company would insure a potential risk of awards and settlements of $100 billion, which may represent all of its assets?

In a way fairly similar to the 2002 drill by the Group of Seven involving a worst case scenario among financial institutions, a worst case evaluation drill should not be limited to financial and other property damage, including life. It should examine from all possible angles the aftermath of a supercatastrophe, big ticket events as well as a concentration of more mundane disparate events.

- It must address multiple injuries on multiple policies from a large scale action, and
- It should examine innovative lawsuits, when there is no legal precedence or precedential value other than the wave of liability losses for insurers.

Analytical studies along the lines I am suggesting must reflect the likelihood that events involving a concentration of claims can lead to mega-risk equivalents. That's what the manufacturers of vaccines have examined in establishing their agenda for tort reform, while medical laboratories also have a special list. In 2001, in France, doctors refused to perform diagnosis of malfunctions in the unborn because they were sued for huge compensation by children born with malfunctions that had not been detected in the womb. Eventually, this case was settled by new legislation that put major restrictions on some claims.

One of the key advantages of worst case analyses is, precisely, the ability to study not only the likely magnitude of a catastrophe but also the advisable number and nature of legal restrictions in order to keep operational risk under control and the insurance industry on its feet.

13.3 Learning from the precedent of Y2K tort

This short section seeks to substantiate the thesis for tort reform advanced in section 13.2, through the example of year 2000 (Y2K) claims and potential claims that never fully materialized. Prior to reform in the US, concerning this specific Y2K problem, Andrew Grove, Intel's chairman, had predicted that:

- America would be tied down in a sea of litigation, and
- Year 2000 litigation would put the asbestos litigation in the shade.

An example of the fear inspired by the first of these points was the fact that in the United States some big system integrators kept away from projects for fear they would be held liable for unresolved problems, long after the projects were over, because of Y2K.

Added to that has been the fact that exposure to Year 2000 problems was a very opaque operational risk. Some companies attempted to factor it into their legal risk
exposure, with varying degree of success. Both rating agencies and insurance firms worked along that line, but the results were not convincing. Insurers were worried that defendant industries might seek to force them to:

- Cover their legal fees, and
- Pay damages awarded by courts.

If the US tort legislation relating to Y2K had not changed in time, Y2K cost to the insurance industry could have been, indeed, catastrophic. The Independent Insurance Agents of America estimated that they could reach $65 billion. Therefore, insurance companies moved quickly to prevent Y2K-related suits.

Some of the insurers I know revised their policies, to exclude Y2K claims on the ground that Y2K perils were not known to exist when the policies were written. As a result, insurers said, premiums had not been collected for such coverage. Shipowner’s insurance went through the same procedure. An example is Clause 3–24a of Norwegian marine insurance, which governed the shipowner’s insurance cover. This has been a safety regulation obliging the assured to guarantee that manufacturers of:

- Computers
- Electrical equipment, and
- Electronic equipment

on board ships have given a written confirmation of Y2K compliance. Short of this, the shipowner should itself assure compliance because, otherwise, the insurer explicitly stated that it would decline to cover losses arising from non-compliance with clause 3–24a – on grounds that the insured’s failure to take needed Y2K steps would amount to gross negligence.

At about the same time, the Association of British Insurers (ABI), which represents more than 95% of the UK’s insurance industry, announced that insurers would exclude year 2000 problems from policies. The reason given was that insurance is designed to cover what is basically an unforeseeable event. By contrast,

- The millennium problem was known and foreseeable
- It was manageable, though many insured companies had chosen to ignore it.

I see these three examples, the American, Norwegian, and British, as good precedents for other tort problems. The sense derived from these and similar cases is that tort is manageable (see also section 13.7) provided that either the legislation does not allow excesses in compensation, or the proper measures are taken in time.

Proactive action requires insight and foresight. A methodology of successive steps in setting up and maintaining a tort control program is shown in Figure 13.1. Notice that both the Norwegian marine insurance and ABI acted proactively. They redefined insurance policies and events covered by insurance on the ground that the wide public attention drawn to Y2K meant that it was no longer unforeseeable – and therefore gross negligence was involved at the insured entity’s side if it failed in compliance and in taking needed control action.
13.4 Compensation for claims: a case study with asbestos

Both mega-risks of the 9/11 variety and a concentration of claims amplified by class actions, which are followed by very liberal settlements, have turned the classical way of calculating insurance premiums on its head. In spite of all the talk about globalization, old formulas need to be rigorously revised. How deep this revision should be depends to a significant extent on the jurisdiction under which cases are tried if they come to court.

As I already mentioned in connection to legal risk, in England decisions on compensation for victims of asbestos are set by judges. Typically they run at the level of £50 000 to £60 000 ($75 000 to $90 000). In the US they are decided by juries, and can run at hundreds of millions of dollars. The most recent case on tobacco in the US was set at the unrealistic level of $28 billion – a high multiple of the capitalization of Philip Morris.

Even a third of the capitalization of a company paid for asbestos compensation is a scary statistic. On 29 November 2002, Sealed Air, a maker of bubble wrap, agreed to pay one-third of its then market value, some $730 million, in cash and shares to a trust fund being created to benefit asbestos victims, out of the bankruptcy of W.R. Grace, the chemicals company. The irony is that Sealed Air never produced, marketed, or sold asbestos.

The litigation against Sealed Air is a good example on tort spillover because it came by way of an acquisition structured to avoid this type of legal problem. In 1998 the firm paid $5 billion for a division of W.R. Grace that made plastic shrink-wrap for meat and fish in grocery stores – but never used asbestos. The gateway for asbestos defendants was that Sealed Air got from Grace an indemnity against any possible asbestos litigation, but that guarantee disappeared in April 2001, when Grace declared bankruptcy. A year later, lawyers for asbestos victims found the loophole and sued, arguing that:

- Sealed Air’s acquisition had been fraudulent, and
- The firm had brought Grace’s legal liabilities with its operations.
The cost of settlement for a crime it did not commit has been devastating to Sealed Air. Neither is this the only case of peripheral asbestos damage. Crown Cork & Seal, for example, was overwhelmed by suits tied to a firm it owned briefly in 1963, when asbestos was still the material of choice, and long before any health hazards were widely known.

There is another irony in this Sealed Air story. In July 2002, as asbestos litigation against the company built up steam, the market penalized its equity, which plunged from $40 to $14. After the settlement was announced, in spite of giving one-third of the equity away, its share price rose by 40%. That increased equivalently the value of the 9 million shares put in the trust for asbestos victims under the settlement.

With dilution of equity of the magnitude we have just seen, and the golden horde of settlements for asbestos victims and their lawyers, there is no surprise that asbestos has come to scare investors and shred share prices. In late July 2002, Saint-Gobain’s shares fell 20% after the glass and building materials group announced a first semester of 2002 provision of €50 million to meet potential claims. Both the extraordinary reserves and the big drop in Saint-Gobain’s equity price in the aftermath of the market news is a consequence of the fact the company cannot rely only on its insurance because of the emergence of a new class of bulk claims which has increased the level of claimants to 60,000. In fact, Saint-Gobain said that it was to set aside a further €50 million, while leaving open the possibility that claims could stretch into the future.

The problems faced by Asea Brown Boveri (ABB), the Swiss-Swedish engineering group, which has large-scale operations in Europe, the US, and Asia, have been amplified by mounting asbestos losses in the US. To these has been added the failure to get a suspension to additional compensation claims, for which ABB had appealed to the US Supreme Court.

ABB attempted to limit future asbestos liabilities by seeking bankruptcy protection for Combustion Engineering, its troubled US subsidiary which in the 1950s used to be an engineering powerhouse. US lawyers, including those behind the year 2002 appeal to the US Supreme Court, said flaws in the legal system meant some states would allow alleged victims to sue the parent company regardless of any bankruptcy by its local subsidiary.

In connection to the operational risk that hit Combustion Engineering, a West Virginia court case has revealed how weak-willed companies can be when taking on litigants. ABB seized on the idea of isolating its US subsidiary, possibly via Chapter 11, as if bankruptcy were a magic solution. Because ABB faced its own severe financial problems, the move has not only shown how desperate the parent company was, but also the fact that it did not do its homework.

Since Combustion Engineering is virtually bankrupt and US juries tend to grant huge compensations, ABB would have had to throw more money into the bottomless pit to appease claimants. But there was not much money around, and the company’s bondholders and shareholders felt the pinch.

- ABB’s bonds were quoted below 50 cents to the dollar.
- This indicated ABB’s equity was virtually worthless.

By the end of 2002, ABB had net debt at 1.5 billion, and another $3.7 billion of debt maturing in 2003. Therefore, unless Combustion Engineering could be fully
isolated, the only hope of ABB, by putting it into Chapter 11, was to win a stay of execution. Asbestos was not the only cause of the company’s downfall, but it made a bad case even worse.

For bondholders of ABB, the troubles had started well before the asbestos case hit. In the week of 25 March 2002, ABB had to negotiate new terms on $3 billion loans, including higher interest payments from Libor plus 60 basis points, with banks also receiving a 40 basis points arrangement fee. Citigroup and Crédit Suisse First Boston, which had underwritten the original loan, were the renegotiators of new terms. But the market was not convinced. Both Moody’s, which rated ABB A3, and Standard & Poor’s, which rated it A+, expressed concerns. Traders said:

- Credit derivatives for ABB were trading at a spread of 450–500 basis points over Libor,
- Analysis observed that such an important spread is more in line with a B rated credit, below junk status.

Not surprisingly, the equity markets took notice. ABB’s capitalization collapsed from $39.8 billion in February 2000 to just $1 billion on 22 October 2002, when the company’s stock reached a low point. This, in spite of the fact that its four main divisions – automation technology, utilities, power technology, and industries – constituted Europe’s second biggest engineering group. There was also the inevitable warning on profits which contributed to cutting ABB’s share price by nearly two-thirds (see also section 13.7 on ABB).

If an insurance company had underwritten the asbestos problems of ABB, its equity would have taken the same beating in the capital market as that received by the engineering group. In fact, insurance stocks were not at all immune to market blues (as we saw in Chapter 12), and asbestos hit them strongly (see section 13.5). Insurance stocks have been particularly weak because of fears that the almost relentless slide in equity markets will leave insurance companies:

- Highly exposed in capital terms, and
- This will trigger forced selling.

As Murphy’s law suggests, “If something can go wrong, it will.” Whether we talk of asbestos, tobacco or other claims that develop into mega-risks, it is important to do stress testing and run worst case scenarios, in an effort to challenge the obvious and flush out ahead of time what can go wrong, where, when, and how. When it comes to premiums, insurance coverage, and capital adequacy, the time for half-measures and postponements has definitely passed. It is not the old risks which should frighten insurers. It is the new and unknown, and mega-compensations which are part of them.

13.5 Asbestos claims have been a nightmare to the insurance industry

A.M. Best has estimated that the insurance industry may ultimately face up to $121 billion in asbestos and environmental (A&E) losses, adding that commercial insurers,
and to a lesser extent reinsurers, remain underfunded by approximately 50% with regard to reserves for ultimate, undiscounted A&E liabilities. Both the “A” and “E” type losses are heavy. Even if environmental payouts are declining, they still represent more than 50% of A&E settlements.

In the UK, confirmation of the rumoured £200 million ($310 million) rights issue from British Insurance reminded the market of the need for more fund-raising in the sector. In September 2002, Royal & Sun Alliance was expected to tap its shareholders for about £1 billion ($1.55 billion), but in October of that same year its equity lost nearly 8% in one day due to a persistent rumour that Royal & Sun was exposed to major asbestos claims.

Both the companies facing legal risk because of asbestos, tobacco, or other ‘popular’ reasons for litigation, and their insurers, are scared of human ingenuity in bringing to the public eye, for exploitation, operational risks not identified when a product or process was originally designed and implemented (see the case of Crown Court and Sealed Air in section 13.4).

Royal & Sun Alliance had also been sued by defunct engineering firm Turner & Newall on behalf of former T&N employees who were said to be covered by an employer’s liability policy in effect from 1969 to the end of 1977. That news, together with reports that Swedish engineering groups Atlas Copco, Trellebord, and Sandvik had also been named in asbestos-related lawsuits, sent European share prices tumbling at the beginning of November 2002.

In the US, a study by A.M. Best notes that asbestos loss reserves jumped 24% in one year alone: 2001. Best attributes this significant rise in asbestos losses actions propelled by payments that increased 13%, or more than $200 million over that same year, by defendants and insurers. That trend is compounded by:

- Bankruptcy filings by major asbestos producers
- Proliferation of lawsuits filed on behalf of peripheral defendants
- Collapse of several settlements and payments schemes
- Packaging of numerous asymptotic plaintiffs with a handful of seriously ill plaintiffs, and
- Rise in number of asbestos practices among plaintiff attorneys.

Asbestos compensation has become a perpetual motion machine. With the increase in number of lawyers specializing in asbestos claims the aftermath of asbestos-related compensation turned to the worst in the fourth quarter of 2002. Insurers and industrial groups in the US and Europe found themselves obliged to add to reserves as they were getting deeper into litigation.

This new surge in potential asbestos losses was highlighted by the US insurer Chubb, which in late October 2002 announced that it had added $625 million in reserves for asbestos-related litigation. The move resulted in Chubb having a $242 million net loss for the third quarter of 2002. Interestingly, the insurer boosted its asbestos reserves after embarking on a study of reserve adequacy.

The Chubb study was announced weeks after St Paul Companies agreed to pay over $987 million to settle asbestos claims from policyholder MacArthur, a former distributor of asbestos products and third-party claimant. This settlement raised the possibility of a wider range of companies filing asbestos claims against carriers. In
fact, MacArthur, and its Western MacArthur unit, filed a lawsuit against Hartford Accident & Indemnity for the period 1967–76. Hartford said that MacArthur’s policy limits were exhausted in 1987.

Some insurers found it difficult to survive. New Jersey-based non-life group Highlands Insurance filed for Chapter 11 bankruptcy protection months after it adopted a plan to cease writing of new and renewal business, and run off its insurance operations. Highlands was spun-off by Halliburton, the oil-services firm, in 1996, and it has seen its financial condition deteriorate over the past several years.

Continued underwriting losses and additions to asbestos and environmental reserves gave Highland a net loss of $342 million in 2001, following a loss of over $106 million in 2000. In its filing, the company listed negative surplus of $180 million with assets of $1.64 billion and liabilities of $1.82 billion as of 30 June 2002.

In Germany, Allianz added $750 million to asbestos reserves of its US unit Fireman’s Fund Insurance; Munich Re added $370 million in asbestos reserves for American Re-Insurance as part of a recent $2 billion capital infusion for its subsidiary. To survive, even rich companies like the German insurers and reinsurers will have to watch their assets, liabilities, and risks much more closely than they have done so far.

On 14 November 2002 Allianz also blamed huge losses on loans to South American and German companies for a record amount of red ink. The company said steep increases in provisions for asbestos and floor-related insurance claims, and continuing stock market volatility, were also major contributors to a 2002 third-quarter loss of €2.5 billion – which turned a €1.6 billion profit for the first half of 2002 into a €900 million torrent of red ink for the first nine months of the year.

In an attempt to improve its capital strength, Allianz has been considering plans to raise about €2 billion through two bond issues. Neither is asbestos the only bottomless hole. Banking, particularly the Dresdner Bank and its DRW subsidiary, contributed losses of €972 million (see Chapter 12). Companies which thought the go-go 1990s of easy money would never end are now deeply regretting their foray outside their core business.

To face the mounting financial and operational risk challenges, the German insurance industry is setting up an organization, known as Protector, to take over the obligations of life firms that get into trouble. Some experts think that 30% of insurance companies could disappear in the next 3–5 years, through mergers or by ceasing to write new business. This projection reflects the fact that according to many analysts several German life insurance groups are sitting on hidden losses after tumbling stock markets wiped out their reserves. This has fuelled worries about their:

- Capital adequacy, and
- Financial health.

A sign of the insurance industry’s woes came in mid-November 2002, as AMB Generali, Germany’s third biggest insurer, warned it would miss its 2002 profit target after massive writedowns on equity investments forced it into the red in the third quarter of the year. For its part, Goldman Sachs warned that the life assurance industry faced a radical shake up, estimating that between 25 and 30 insurance groups could have difficulty meeting capital adequacy requirements.
Fitch Ratings has also highlighted the dramatic decline in the capital strength of life insurance companies. Indeed, growing fears of a possible insolvency in the insurance sector led Germany’s financial regulator to put about 20 companies on a special watch list. Concern also prompted the big insurers to agree to back an industry pool that would bail out smaller rivals if they were unable to pay the 3.25% guaranteed rate of return to their policyholders.

13.6 Challenges facing major financial institutions and their daily business

Nobody today would really like to be in the shoes of Citigroup, the largest US financial company, with about $1 trillion in assets. As 2002 came to an end, Citigroup faced a potential triple risk: Big payouts over lawsuits, stiff fines imposed by regulators and legal authorities, and a regulatory crackdown, including tighter supervision, which the financial institution tried to avoid by dividing its Salomon Smith Barney subsidiary into a Salomon investment bank and Smith Barney broker – endowing the latter with an independent financial analysis unit.

‘Regulators may feel that Citigroup has to slow down and apply better risk management, rather than continuing to build their empire,’ said David Hendler, an analyst with Credit Sights. Serious damage could come from Citigroup’s links with Enron, including the special purpose vehicles (SPVs) deals, Citi’s and J.P. Morgan Chase’s offshore transactions intended to beautify the telecoms market appearance, and the prepaids – the alchemy which turned Enron’s debt into assets. Experts said that Citigroup’s liability could hinge on whether it knew it was doing something wrong.

- Senate investigators alleged that $4.8 billion in Citi transactions with Enron were shams and that the bank knowingly assisted the energy company in deceiving investors and the public.
- Neither was Citigroup alone. J.P. Morgan Chase had another $3.7 billion out of a total of $8.5 billion in dubious deals with Enron.

Pension holders have been suing both Citi and J.P. Morgan Chase over these Enron deals. In parallel to this action, a major bondholders’ suit alleged Citi and other banks did not show proper due diligence before selling them $11 billion worth of WorldCom bonds. These have been suits that fall in the junction between tort and breach of contract, containing elements of both as well as of operational risk.

At Wall Street, analysts said that it was not unreasonable for Citigroup to set aside $1.5 billion in the fourth quarter of 2002, to settle claims that it misled customers with biased stock research – an operational risk; and also, to cover different loans losses, which represent credit risk. Citigroup’s provisions included a $400 million payment to settle regulatory probes into Wall Street’s conflicts of interest in stock research and funds for related lawsuits.

Citi was the first of several banks taking action after a 20 December 2002 announcement of a $1.4 billion settlement over research conflicts between state and federal securities firms. Bank of America also announced setting aside $1.2 billion in reserves for the fourth quarter of 2002, but mainly for loans losses.
Bloomberg Professional suggested that Citigroup faced at least 62 lawsuits tied to its research practices, according to regulatory filings. The charge which it took was expected to reduce its fourth quarter 2002 earnings by 29 cents a share. On the upside, it created a legal reserve which gave investors some confidence that the credit institution was taking care of its operational risks and other exposures.

Some analysts commented that all these extra reserves may not ultimately be enough to cover the entire cost of settling private litigation – which is part of the financial industry’s operational risk. In the 1990s, for instance, Prudential Securities ended up paying 300% over its originally estimated liability to settle regulatory charges and investor lawsuits – to the tune of $8 billion.

Experts say that we will be hearing much more about court action involving due diligence in the years to come, because new financial instruments open a landscape where court cases involving tort relating to due diligence can prosper. The Internet at large, and more specifically electronic banking, provide examples of other operational risks which have developed during the past few years.

The Internet, and on-line banking generally, brought many challenges to financial institutions in connection to existing legal frameworks as well as regulatory rules originally designed to address issues affecting the physical world. Beyond this, not only all the consequences of new technology but also new laws and regulations have not been interpreted by the courts in a way to create crossborder jurisprudence. Here are some of the issues affecting the developing e-banking delivery channels:

- On-line offerings may be considered solicitations, which in some countries are not permitted by the law
- Relationships created with customers in different jurisdictions may become legally unstable, and
- Regulations applying to Internet banking are different than those addressing traditional delivery mechanisms, affecting products with multi-channel delivery.

Core to all these issues is the fact that on-line financial services exist in a global and, therefore, multijurisdictional world. Legal problems surfacing on the Internet do so not because there is no law, but because it is not clear about which country’s laws apply in every specific case, as well as what should be done when there are legal contradictions from state to state.

Apart from legal incompatibilities from state to state, new laws and regulations are necessary to cover issues specific to on-line banking, as current regulations leave many loopholes. For instance, credit risk assumed by a bank, and the way it is managed, can be affected by Internet banking activities in different ways:
Remote communication can make it much more difficult to assess creditworthiness of existing and potential customers.

The Internet can allow banks to expand very rapidly, leading to weakened internal control, and

There is a tendency to pay higher rates on e-banking deposits squeezing profit margin, as well as grant sub-prime credits leading to heightened credit risk.

Legal and regulatory solutions to be provided at the junction of tort and breach of contract must take a system view. Otherwise they can be neither effective nor consistent. Figure 13.2 provides an answer to this challenge, starting with the product, proceeding to the processes of production and delivery (which may be online or brick and mortar), and following up with the three main components of the dual delivery channels: people, technology, and methodology.

Another example of a challenge, brought to the foreground by technology and globalization, which currently confronts financial institutions, is liquidity risk precipitated by adverse information about a bank. True or false, such information can be easily disseminated over the Internet through bulletin boards and news groups.

![Diagram of Figure 13.2: An analytical approach to operational risk identification.](image-url)
causing depositors to withdraw their funds in large number at any time of the day, thereby creating a tort with respect to the financial institution.

New technology and the rapid dissemination of information also tend to increase deposit volatility as customers get into the habit of maintaining accounts on the basis of interest rates and/or better contractual terms. Therefore, it is necessary to exercise a more accurate monitoring of liquidity than in the past. Changes in the composition of deposits and loans must now be managed dynamically, in real time. This is doable, but few banks have the technology and the skills to execute it in an able manner.

13.7 Tort exposure and management risk correlate

To a significant extent, tort is management risk and vice versa – management risk is at the origin of many cases of tort. Because of this, the two notions have a great deal in common, and the same is true of their effects. This can be shown through a couple of examples involving due diligence on management’s behalf.

- The fall of Martin Ebner’s hedge funds because of wrong betting, and
- The Swissair meltdown, in the aftermath of a long list of poor managerial decisions.

By practically every account, Martin Ebner, one of Switzerland’s wealthiest investors, went through the 1990s at the helm of one of Europe’s top hedge funds. But on 1 August 2002 he was forced to sell his four quoted investment funds and liquidate part of his sizeable stakes in several of Switzerland’s best-known blue chip stocks.

- Ebner quit the hedge funds game after losing more than 5 billion Swiss francs (CHF) ($3.4 billion) from the collapse in equities on which he was betting, the foremost being Crédit Suisse and ABB.
- Sizeable stakes were part of Ebner’s strategy. He had made his fortune by taking large stakes in a few big Swiss companies during the bull market, but the bears unravelled his investments edifice.

During his years of might, Ebner championed shareholder rights and scored victories connected to executive performance. A recent one has been the ousting of Percy Barnevik at Asea Brown Boveri. His influence however meant bigger shareholdings and board membership, and this ultimately compromised his ability to make a swift exit from his investments as arbitrageurs should do.

The cost of being deeply involved in management problems and internal musical chairs in companies in which his money was invested has been red ink. It amounted to estimated losses of around CHF 800 million in 2002 alone. At Crédit Suisse, where he supported Lukas Muhlemann, the former CEO, the loss on his investment stood at an estimated CHF 4 billion.

Ebner concentrated on agitating the Swiss business elite. The aftermath of this has been that his Swiss financials funds lost 53% of their value over one year (mid-2001 to mid-2002), which compares poorly with a sector loss of 37%. The irony here is
that in the leveraged bond blood bath of 1994, when the Fed increased interest rates in six successive steps, Ebner prided himself on having lost much less than other hedge funds, as for instance Steinhart’s.

None of Ebner’s investors who lost a fortune have as yet gone to court for negligence, or for his mixing of investment and king-making. This would have amplified the financial woes, as his decision to sell control of his four quoted investment funds, known as the Visions – Pharma Vision, BK Vision, Stillhalter Vision, and Spezialitäten Vision – and substantially reduce his stake in Crédit Suisse (his biggest single investment) followed speculation that he was under financial pressure after sharp falls in equity markets.

From the start of 2002 to disinvestment, the market value of the four quoted investment vehicles of BZ Group, Ebner’s private investment company, has fallen from CHF 3.6 billion to 3 billion. The market value of Crédit Suisse, in which Ebner had a nearly 10% stake until shortly before disinvestment, in July 2002, has fallen by CHF 54 billion since the end of 2000. ABB, in which Ebner retained a 9.7% stake, has seen its market value drop by CHF 40 billion over the same period.

The sale of the four companies to the Zurich Kantonalbank, for an undisclosed sum, had been prompted by BZ Group’s unwillingness to continue supporting the share prices of Crédit Suisse and ABB. There was also a cross-leverage. Swiss bankers said Credit Suisse, one of the country’s two big banks, had increased its exposure to BZ Group by extending additional credit.

UBS, too, was involved in financing Martin Ebner, but it started to withdraw in 2001, and completed its exit earlier in 2002 – just in time. While the management of Visions failed to support the interests of its investors, UBS has been a better judge of risk and return. It pulled out of what was becoming a major exposure, and therefore it saved itself from navigating in a sea of red ink.

The operational risk connected to the Swissair meltdown was not too different in terms of lack of due diligence, as far as investors interests were concerned. Swissair used to be the flower of the air transport industry, but then its management made a series of blunders. When this happens stockholders pay the price, while the senior brass itself opens its golden parachute.

The blunders started with the failure of the contemplated merger between Swissair, KLM, SAS, and Austrian Airlines. This would have created a global aircarrier, with each of the first three entities taking a 30% equity in the new concern, and the balance going to Austrian Airlines. Egos rather than financial hurdles stood in the way, and the merger did not go through.

Subsequent to that, as if to demonstrate the cost of management risk, the Swissair directors and CEO miscalculated their options. Since getting money from the banks was no problem, they went on a shopping spree with deep pockets. The AOM, Air Liberté, and Sabena investments were the worst of a series of false steps that dragged down a once-proud airline. Until the late 1990s Swissair was one of the most admired carriers, famous for punctuality and superior in-flight service.

- It was financially stable, a microcosm of the country whose flag was displayed on its airliners’ tails
- It was also operationally solid, reliable, orderly and successful – an emblem of dependability.
All that became a thing of the past. By mid-2001 Swissair was struggling to avoid going bust. In 2000 its losses were CHF 2.9 billion ($2.0 billion), and as the business forecast became bleaker, its debts of CHF 7.8 billion reached more than six times the value of its equity. A leverage of 600% is unheard of for a maturing industry like the airlines. Neither was the future looking much better.

Global alliances might have been an option, but they did not get off the ground. As we saw, the deals with SAS, KLM, and Australian Airlines fell through, Singapore Airlines deserted the Global Excellence alliance, and Delta Air Lines abandoned the Atlantic Excellence. Neither did Swissair’s top management show an excellence of its own.

One of Swissair’s major problems has been that it was based in a high-cost country and, because Switzerland was not a member of the European Union, its airline did not have the freedom to expand alone in Europe. This, plus mismanagement, led to the AOM, Air Liberté, and Sabena blunders under the banner of the Qualiflyer Group. Other small carriers with which Swissair sought links were LOT Polish Airlines, LTU in Germany, and TAP, Portugal’s flag carrier. It also hooked up with South African Airways.

Money turned to dust in those airlines in which Swissair acquired equity, while its management was left with the hope that the other partners would probably become customers for Swissair’s catering and other aviation-service subsidiaries, which was non-core business and small fry. Altogether Swissair spent more than $1 billion on different stakes, on top of a similar amount building up its catering operation to make it appealing to its partners. In effect, Swissair was buying customers for the aviation-service businesses it also had to acquire.

All this flawed strategy was chosen without due regard for the fact that nearly all the airlines Swissair was buying into were in deep difficulties. They had hopelessly big losses and little freedom to cut costs, because continental European labor laws do not allow hire and fire. Management incompetence saw to it that the commitments were made without an exit strategy. Then the flag carrier went bust, leaving its stakeholders high and dry in a deal that involved management risk and tort.

Notes
2 Herald Tribune, 4 May 1998.
5 The Economist, 16 November 2002.
7 Bloomberg Professional, 23 December 2002.
8 Financial Times, 1 August 2002.
The challenge of terrorism and insurer of last resort

14.1 Introduction

According to A.M. Best, insurance contracts related to terrorist acts, in the way they are underwritten today, did not exist before 11 September 2001. Acts of terrorism were covered under standard property/casualty policies, but the clauses of these policies did not specifically exclude losses resulting from terrorism as contrasted to acts of war.¹

‘Whether or not terrorism is an insurable risk is debatable,’ says A.M. Best, from a credit rating agency’s viewpoint. Some insurers, however, have shown appetite for terrorism exposure. American International Group (AIG) is the leader in a co-insurance program for aviation war risk and hijacking liability. Among other participants in this type of exposure are ACE, AXA, Chubb, and GE Frankona.

Also, five big European insurers and reinsurers – Allianz, Hannover Re, Scor, Swiss Re and Zurich Financial – collaborate in funding a new entity known as Risk Insurance and Reinsurance Luxembourg. The capital of this new company is €500 million, and the goal is to provide property coverage against terrorist acts – which is a policy of high exposure.

Because of business disruption, perils to human life, and likely huge physical damages, terrorist acts have changed the insurance landscape. They call for rethinking conditions and clauses of insurability; updating the definition of technical and operational risk; identifying hidden exposures; pricing these policies; and focusing on perils that should be excluded. Risks associated to terrorist acts make it necessary to develop refined pricing methods by:

- Operational risk type
- Extreme event
- Risk expectancy
- Risk impact
- Country, city, neighbourhood
- Loss experience.

Terrorist acts magnify the sense of business interruption as a major operational risk for all companies. Loss of life and loss of property aside, terrorist acts are underlining the aftermath of business disruption on the economy as a whole, and most particularly on insurers and reinsurers. For the latter, business interruption has a double impact.
• It is a technical risk because they insure their clients against the perils of business interruption (see section 14.2), and
• It is an operational risk, because insurers and reinsurers themselves are subject to business interruption.

The risk of business disruption should be examined in its broader concept. A seminar on 5 December 2002 at MIT on supply chain response to terrorism emphasized the need to plan for the unexpected. The likelihood of large-scale terrorist acts, MIT says, should lead supply chain managers to adjust relations with their business partners, contend with transportation difficulties, and amend inventory management strategies. In doing so, they must provide valid answers to three key challenges:

• Defining the possible collaborative avenues between the public and private sector
• Managing supply chains under increased uncertainty due to business disruption
• Preparing for another attack, ensuring that supply lines are maintained while controlling inventory costs.

As a result of the events of 11 September 2001, threat scenarios currently being made by insurers differ substantially from those of the past, when terrorism was usually part of the standard fire and business interruption policy. Rarely if ever an additional premium was calculated for terrorist acts. This lack of special attention to extreme events associated to terrorism reflected a risk management assessment that this type of loss was only of really minor importance as far as frequency and severity were concerned. However, after 9/11 such estimates have been fundamentally revised with classical measures of loss severity like:

• Probable Maximum Loss (PML), and
• Estimated Maximum Loss (EML)

being brought to the drafting board for revision. PML and EML quantify maximum loss under normal conditions, assuming not total loss of a building or plant but a partial one, often offset to some extent by preventive measures. This has become inadequate, and with it the notion that acts of terrorism are definitely insurable.

The huge amount of losses that may be associated to terrorist acts themselves, and to business disruption resulting from them, challenges this concept of insurability. It brings into the picture the need for an insurer of last resort (see section 14.6) – similar to the one already existing as lender of last resort, which dates back to the late eighteenth century. Historical evidence indicates the concept of lender of last resort dates back to 1797, when Francis Baring described in these terms the Bank of England. A century later, the Bank of England obliged, saving his institution from bankruptcy – but it did not repeat the gesture in 1995, and Barings failed.
14.2 Business disruption resulting from 9/11

The concept of business disruption and the risks it represents were introduced in Chapter 5 in connection to technology. During the events of 9/11 at the World Trade Center, the worst losses were suffered by financial services companies like Cantor Fitzgerald, which lost 700 of its people. Morgan Stanley had more than 3000 staff at work in the south tower, but was able to evacuate all but just under 40 before the tower collapsed.

Communications companies, too, lost staff. In spite of that, they struggled with the feat of keeping their networks running, while coping with destroyed facilities and record call volumes. According to some accounts, in the aftermath of 9/11 as many as 25,000 technology and communications workers worldwide have been contracted by companies working to repair or restore their telecommunications facilities. There have also been reports of some companies putting personal computers in apartments in New Jersey, trying to remain operational through temporary solutions.

Some companies headquartered in adjoining buildings to the Twin Towers said their operations have not been affected, even though they could not access their offices. An example is American Express whose global headquarters were in the World Financial Center, too close to the World Trade Center and therefore inaccessible for security reasons. To avoid business disruption, American Express capitalized on its operations located worldwide, shifting resources to assure that services could run uninterrupted.

From Cantor Fitzgerald to American Express, there is a sea of difference in terms of business interruption due to the same terrorist act. Therefore, to develop new risk management concepts to cover the threat of terrorism we must ascertain which high impact terrorism risks are insurable at all. In the general case a likely answer is Yes in the case of American Express, but the answer may be No in the case of Cantor Fitzgerald. Also, No in concentration of risk – like insuring many tenants in a skyscraper. As is the practice in the insurance industry, the insurability of risks must be assessed according to their:

- Ease of quantification and qualification
- Lack of correlation with other risks and among themselves
- Mutually shared interest of insured entities in the risks being insured, and
- Economic feasibility of placing them under guarantee.

As 9/11 shows, the risk of terrorism does not conform with these criteria taken in unison. Equally important is the fact that, as opposed to natural catastrophes (see section 14.3), historical data and statistics give little or no indication of the frequency and severity of future losses from terrorism. What we all seem to know so far is that terrorism is uncorrelated with other risks, and some experts say that even of this we cannot be 100% sure.

Since it is difficult to balance the risk due to the severity of loss resulting from terrorism, and the coordinated attack at several locations, the economic viability of insurance is questionable. To learn more about risk and return, the insurance industry must develop models able to estimate the severity of loss resulting from the new perspective of terrorism risks at large, and of business disruption in particular. This
requires a new perspective of quantifying the risks and the crucial conditions for making terrorism risks insurable. It also calls for testing innovative solutions such as:

- Forms of insurance like finite risk
- Pools of insurers working in a way similar to syndicated loans, and
- The use of capital markets to achieve a broad risk spread.

As we will see in section 14.6, in all likelihood, the government will also be called upon to act as reinsurer of last resort, particularly so if insurers and reinsurers were required to provide terrorism cover at a regulated price. The issue of a regulated price is controversial because it means free markets do not work any more. In this case, short of government support, terrorism would trigger a wave of bankruptcies in the insurance industry.

All this is written in the understanding that claims for contingent business interruption from 9/11 have raised very complex coverage issues. Some claims were being filed by companies hundreds and thousands of miles from New York City. These and other events bring forward questions about the conflict between:

- The underwriters’ intent, including premium charged, and
- The customer’s alleged understanding of the policy’s coverage.

Because of the complexity of some of the issues, and the billions of dollars at stake, the way to bet is that some of these claims will be decided in the courts. They will also raise soul-searching questions in insurers’ boardrooms, as directors and CEOs have to ask themselves if their company can afford to write any form of terrorism coverage given the uncertainties and unpredictability of what location, form, magnitude, and intensity future terrorist acts will have. Classical principles in the insurance industry have been:

- If a risk cannot be assessed, then it is uninsurable, and
- If limits of insurability have been reached for a single event, then they will be most probably exceeded in case of major catastrophes.

Insurers and reinsurers cannot afford to discount estimates that business interruption losses following 9/11 could reach 25% of all insured losses, while other projections suggest that exposure to that risk remains largely unknown. Some experts say that it might be worse than this 25% guestimate, because many losses relating to 9/11 cannot be properly assessed and court action will be largely based on other party’s guestimates.

As one of the research meetings pointed out, after 9/11 insurers and reinsurers have concluded that when it comes to terrorism, the existing alternative risk-spreading mechanisms must respect several principles, some of which are contradictory; for instance, assuring a consumer access to terrorism insurance at affordable cost and protecting the survivability of insurance companies. A corollary to this is that policymakers have to decide:
How to spread losses across the insurance industry, and
Whether to spread them across an even wider base, including governments.

Those who look favourably at the message conveyed by the second point here, say that the primary driving force behind the government’s decision to enter into terrorism reinsurance should be to safeguard the economy’s access to needed insurance protection. At the same time, measures must be taken to avoid bureaucracy and therefore protect the taxpayers from inefficiency and excessive costs.

Experts opposed to government intervention as reinsurer of last resort point out that alternative risk transfer (ART) instruments could do the risk spreading job. This may be true up to a point, but it is unwise to disregard credit risk associated to ART-type solutions (see Chapter 11).

Indeed, an area raising concern when it comes to mega-risks is that risk transfer instruments may handle the insurer’s technical risk at the cost of growing credit risk. If alternative risk transfer instruments are extended to include terrorism-linked insurance risks, then they will become the alter-ego of default swaps and collateralized debt obligations that enable banks to transfer credit risks to other entities, including insurance companies, as buyers of these derivatives instruments.

The statement made in the preceding paragraph points to an inherent contradiction in ART-type solutions. It is also wise to account for the fact that this market would eventually taper off. According to the IMF, between 1997 and 2001, the amount of outstanding obligations of these instruments increased by about nine-fold to an estimated US$ 1.6 trillion.

If the bigger risk of terrorist acts and business disruption is added to this securitized market,
Then we might see extreme events in credit risk, at a time when altogether credit risk is deteriorating.

It should escape nobody’s attention that some man-made catastrophes can easily become far more expensive than natural catastrophes. Because much less risk diversification across lines is possible with terrorist acts, single events can greatly affect many lines of business leading, at the same time, to dramatic results on the insurance industry’s balance sheet.

14.3 Learning from technical limits with insurance of natural catastrophes

The hardest hit insurers and reinsurers because of 9/11 were Lloyd’s, Berkshire, Swiss Re and Munich Re, beyond $2 billion each; Allianz, with about $1.3 billion; St Paul, Nissan, AIG, Zurich, XLCapital, Ace, Chubb, Taisei, GE Reinsurance, AXA, and Citigroup, each from $500 million to nearly $1 billion. With the next events the names may change, but the underlying issue does not:

Man-made catastrophes now compete with natural catastrophes on which is more expensive.
To better appreciate the extent and impact of man-made catastrophes at large, and specifically of terrorism, it is wise to compare them to the impact of natural catastrophes. Prior to 9/11 only one event, Hurricane Andrew in 1992, tested the functionality and survivability of the insurance system to a very high impact. Hurricanes are a known risk. By contrast, the 9/11 case involved not only an unprecedented sum that insurers had to pay out, it was also a new kind of risk that highlighted some of the vulnerabilities and limitations of insurance systems. In so doing:

- It raised general questions about the limits of insurability, and
- Led to a debate on the role and responsibilities of the insurance sector in a service economy.

Beyond considerations of general suffering, and the loss of thousands of lives, as we saw in section 14.2 the insurance and reinsurance industries had to rethink the severity of future technical risks and operational risks as well. As we have seen, experts suggest that the costs for insurers world-wide from 9/11 could amount to approximately $40–50 billion. As a comparison, Hurricane Andrew caused losses of $19.6 billion.

Which other events of the past decade or so belong to the huge impact class, beyond the level of $4 billion? After Andrew, in line of importance these events are: the Northridge earthquake at $16.3 billion; Typhoon Mireille, $7.1 billion; Windstorm Daria, $6.1 billion; Windstorm Lothar, $6.0 billion; Hurricane Hugo, $5.8 billion; Windstorm Vivian, $4.2 billion; Typhoon Bart, also $4.2 billion. Including Andrew, their total cost is $69.3 billion – but it has been spread over a decade.

Natural catastrophes, as these instances document, would not be eclipsed from the risk and return screen because of 9/11. Not only are they here to stay, but also climate change is translated into an increase in the number of natural catastrophes, including tropical and extratropical storms, landslides, temporary flooding of coastal regions, a growing frequency and intensity of river floods, tidal waves, heatwaves, droughts, and increasing spread of tropical infectious diseases.

Just as an example along this frame of reference, a simulation done in late 2002 in Hamburg on a supercomputer suggests that the 2002 floods in the Dresden area may not be an exceptional event but a precursor of annual catastrophes as the Elbe recovers its former bed. A similar study in France raised the likelihood that 3.5 million people may have to leave their homes, or accept that they are flooded two or three times per year. Both these projections are based on climate change.

Such events evidently lead to a rise in potential claims. Some European insurance companies predict that the current expected losses per year will quite likely double as a result of European winter storms. Many statements made after research into the consequences of climate change refer to greenhouse effect and project a high impact period which is expected to occur in the next 50–100 years.

- This longer timeframe goes against most insurers culture.
- Even with life and health insurance the planning horizons usually are 5, 10 or 20 years, with 30 years an outlier.
In my judgment, to a considerable extent this perceived discrepancy between ‘the insurers’ culture’ and ‘real life’ is a misconception. Contrary to terrorist acts, effects of climatic changes will not suddenly take place but will increase gradually over the next years and decades, albeit with some spikes. Therefore, there is plenty of reason to study measures focusing on:

- Customers
- Products
- Contracts, and
- Premiums.

One of the important but not appreciated technical and operational risks in insurance is that clauses of premiums and contracts show a long time-lag between the day they are drawn up and the effect of actions taken to take hold of environmental and other risks or suffer the consequences. Hence the need to simulate different thresholds, starting with the nature, degree, and likelihood of climate change, and concluding with net insured loss. This requires a systems approach (see Chapter 5).

Figure 14.1 is a modified diagram of a solution advanced by German insurers. The eight building blocks in this figure are largely self-explanatory. A projection of climatic change and its aftermath is the starting point, followed by the rethinking of existing contractual clauses with the aim to reduce insured losses: for instance, through the introduction, or increase, of deductibles in a way to downsize loss potential.

- Deductibles can be effective in the event of an increasing frequency of catastrophic events and/or their intensity.
- But in the longer term, a sophisticated premium policy is necessary, and this requires thorough experimentation.

In connection to natural catastrophes, for instance, the simulator must take building type and locality into account for homeowner’s insurance. The result will be a personalized insurance policy client-by-client, rather than indiscriminately increasing premiums at national level. Flat premium increases are essentially subsidising those who face extreme risks by taxing those who don’t.

A similar statement is valid in connection to the risk of terrorism. The methodology in Figure 14.1 can be applied to advantage, because it identifies the crucial issues affecting insurers and reinsurers. What I would advise in this case is an extension of this methodology to cover credit risk and market risk associated to derivatives products addressing extreme events caused by terrorism. The fact that counterparties may suffer a double blow because of deteriorating financial markets should be included in the simulator.

It is also most advisable to add some incentives to the insurance policies. A merit pricing system might for instance follow the one used in motor insurance. Unknown risk factors such as local conditions, the state of a building, and superstructures can be included in the premium, while the merits clauses encourage the policyholder to take all necessary precautions in a similar way to Y2K insurance (see Chapter 13).
Another lesson that can be learned from insurance associated to climatic change is the increasing importance of contingency reserves. Part of such reserves should exist in the insurance company, while it should be possible to mobilize the other part without delay. An example is equity put options, contingent surplus notes, and securitization. Many factors need to be analysed and the best ones selected in the context of:

- Strategic alignment
- Type of insured events
Weather derivatives constitute a precedent.2 They also attest that financial instruments are in full evolution. The hypothesis made in the mid-1990s that if an investor can buy a derivatives contract based on an index, then why not do so with the underlying probability of an earthquake or hurricane, proved right. Since 1997 investors have been able to buy or sell a contract whose value depended entirely on:

\begin{itemize}
\item Fluctuations in temperature, or
\item Accumulations of rain or snow.
\end{itemize}

Some weather derivatives pay out if the amount of rainfall at a specified location ranged between 30 and 50 centimetres from 1 November through 31 March. By writing such contracts insurers have helped themselves by providing for future claims by policyholders. The uncertainty of terrorist acts makes simulation a more complex exercise, but it is doable.

The careful reader will note that, whichever the purpose, insurance contracts have to be based on rigorous analytics and mathematical modeling. If they are not resting on analysis, they will not attract institutional investors. Mortgage-backed financing (MBF) provides an example. Without option adjusted spread, MBF would not have become part of the business of custom-packaging securities sold to institutional investors.

A similar statement is valid about CAT securitization. Regulators have kept an open mind about catastrophe derivatives. In research I did in the late 1990s, an executive of the German Federal Banking Supervisory Board was to suggest: ‘It is a good idea to introduce catastrophe derivatives, to spread insurance risk to the investor. But it is very important to study the risks involved, and this needs long time series.’ This is precisely the issue the securitization of insurance addressing terrorist acts cannot yet handle.

14.4 Policies for rethinking insurability of operational risks

In a nutshell, the message the previous section brought to the reader’s attention is that risk analysis and premium calculation can no more be based on a lower loss severity and national level tariffs that assume an average threshold for everybody. They have to account for loss distribution and they must be personalized to allow insurers and reinsurers to estimate their maximum exposure by major counterparty or group of counterparties. Scenario analysis can assist the methodology of risk pricing in providing links between:

\begin{itemize}
\item Underwriting
\item Investment risk
\item Terrorist risk, and
\item Other operational risks.
\end{itemize}
The challenge of terrorism and insurer of last resort

The pricing methodology should consider: higher and lower population densities; concentrations of exposed insured assets; growth of insured values locally, nationally, and world-wide; novel forms of risks being assumed; and the morphing of old risks. It should also include and identify preventive measures, risk control incentives, and the rethinking of deductibles.

The type of study we have seen in Chapter 13 in connection to hull insurance is a model for the pricing methodology, including both the work done by Peter Christmas and the value added reference to reliability. Another value differentiation is a risk analysis process to determine required capital, like the one followed today by independent rating agencies. An example based on A.M. Best references is given in Figure 14.2.

An integral credit rating process, and its required capital perspective, can help senior management’s hand in deciding which technical risk and operational risk exposure to assume, and which to leave to competitors. Behind this statement is the understanding that, together with the airline industry, the insurance industry has arguably been the one most significantly affected by the terrorist acts of 11 September 2001.

Figure 14.2 A simulation for risk analysis including required capital is the key to credit rating
Not only the impact of catastrophic events has dire financial consequences for individual affected insurance companies, but also, as we have seen in section 14.2, the industry as a whole felt the aftermath and it had to rethink its pricing mechanisms in a fundamental way. This is precisely what is targeted by the simulation suggested in Figure 14.2:

- Immediately adapting insurance activities in the aftermath of every catastrophic event, and
- Reallocating resources to limit (or expand) insurance coverage as experience with such events accumulates.

Research, analysis, and simulation are a good paradigm for what needs to be done to successfully attack technical and operational risks affecting every insurer. Catastrophic events are so much more serious when response to op risk challenges is too static, or too lifeless, to reflect what happens. The best solution is that of an adaptive system able to self-organize in response to interactions among economic agents to which it addresses itself.

Terrorism the way it manifested itself on 9/11 is not the only form of what to expect in the future. Examples of other forms of terrorist activity seen in recent years include hijacking and dynamiting of airplanes, PanAm type in-flight risks, bombs in the underground in France, suicide bombers in Israel, car bombs in Spain, the Oklahoma City bomb attack, chemical attacks in Japan, and many other ways in which terrorism is morphing.

Because people are ingenious and new forms of terrorism are unpredictable, insurers have to be flexible in their studies. This has happened in the past. Originally, fire insurance covered fire and explosion damage regardless of its cause. Exceptions were civil war, civil commotion, and war between states. As already mentioned,

- Because terrorism was not mentioned in war exclusion clauses, in most jurisdictions it was covered.
- However, Israel, South Africa, Spain, and the UK have had special regulations and pool solutions, some with government support.

The rethinking of insurability has to be both wide and deep. Risk coverage is usually sold under specified circumstances for suffered losses due to *ex ante* defined events. However, the preceding paragraphs have underlined that understanding the frequency and severity of potential claims, and when and how the losses that arise from an insured event are to be compensated, is a necessary precondition for sound insurance contracts. To do so, insurance companies must work diligently.

Scoreboard solutions can help, most particularly the high frequency/low impact and low frequency/high impact approach outlined in Chapter 8. Experimentation and system design for operational risk control as outlined in that same chapter (section 8.4) is fully applicable to the methodology I am suggesting here. The same is true of practical applications of Six Sigma to assure the board and CEO are truly in charge of underwriting.

Management of both insurance companies and of entities seeking insurance should appreciate that the knowledge base supporting the world of risk analysis and risk
control keeps expanding rapidly. Advances in mathematical tools have made it possible to construct models that are significantly more sophisticated than what was available just a few years ago. We now have the technology to deal with instruments that are subject to:

- Time varying volatility
- Poisson distribution jumps
- Time and state dependent correlations, and more.

The use of increasingly more powerful tools is necessary because innovation in the real world is proceeding at a remarkable pace. New classes of securities are transforming the derivatives landscape – the securitization of complex and risky insurance coverage being one of them.

In conclusion, it helps not at all just to admit terrorism is a huge technical risk for insurers, and operational risk for everybody, if we do not restructure our methods and renew our tools to be able to deal with the challenge. To do so, insurance companies must change their culture. They should also work diligently to obtain:

- Timely and accurate information
- Efficient methods for computation, experimentation and projection, and
- Improved understanding of why, when, where, and how certain events happen.

These are basic prerequisites. Short of them it will be impossible to establish sound insurance contracts for mega-risks, let alone to manage them. The methodology which I am suggesting is valid not only for acts of terrorism which has been the focal point of this chapter, but also for all types of operational risks insurers currently underwrite, or plan to underwrite – rogue traders and CEO malfeasance being examples.

14.5 Benefits catastrophe bonds might provide

The type of system-analytical approach I am suggesting is made even more urgent by the fact that, eventually, insurance contracts for technical and operational risks at large may be securitized along the model of catastrophe bond (CAT bond) transactions. These were first introduced in 1997, by a special purpose vehicle (SPV) owned and established by the United Services Automobile Association (USAA) which floated a $477 million bond with an exposure period of one year.

Securitization, however, does not solve every problem and growing risks have seen to it that during the past few years some insurers have exited the market. Examples are CNA from international reinsurance; Hartford, also from international reinsurance; XL Capital/NAC Re, from pooled aviation (Bermuda) and medical stop-loss reinsurance; St Paul from medical malpractice and several reinsurance lines; Zurich Financial spun off its reinsurance, renamed Converium; while Copenhagen Re, Overseas Partners, and Scandinavian Re also had second thoughts.
As a number of players exited insurance and reinsurance, there has been a shrinkage of capacity.

This has been counterbalanced by CAT bonds which entered the capital markets’ main stream in six short years.

By means of catastrophe-linked bonds, capital market investors are now providing the insurance and reinsurance industries with an additional $1 billion of capacity per year. Insurers worked hard to see that happen. As an example, the majority of CAT bond transactions have been rated (see Chapter 13), which added to the investors’ comfort with insurance-linked securities.

One of the issues worth keeping in mind is that in a precedent, which can be helpful with operational risks bonds, the rating of CAT bonds by independent rating agencies is not linked to credit risk, but to the underlying insurance risk. It is likely that the securitization of terrorist risk coverage, if and when it happens, will follow a similar path.

Classical credit rating gives an indication of the likelihood of a default triggered, for instance, by the lack of financial staying power.

The risk related to a CAT bond is narrowly defined as that of an insured catastrophe loss of a given size occurring, or not incurring.

A point of interest to the eventual offering of operational risk bonds, is that CAT bonds involve a considerable amount of risk transfer. Therefore, most have below-investment-grade ratings. The exception is that early issues, mainly in the period prior to March 1998, were rated investment-grade mainly because they offered some or full protection of principal.

Prior to March 1998, 26% of CAT bonds were AAA, 9% BBB, 58% BB (junk bonds), and 7% were not rated.

A year later (prior to March 1999) only 6% were AAA or AA, 21% A, 64% BB, 2% B, and 8% non-rated.

By 2001, there have been no AAA, AA or A CAT bonds, 4% were BBB, 94% BB, and 2% non-rated.

Clearly there has been a rapid trend toward greater risk transfer, resulting in lower-rated bonds. Maturities also changed. Prior to March 1998, most of the CAT bonds had short maturities (no longer than 12 months), reflecting the fact that conventional reinsurance rates are usually fixed for one year. But since then CAT bonds have been issued with longer-term maturities. By January 2002:

38% were short term
9% between 1 and 2 years
31% between 2 and 3 years
11% between 3 and 4 years, and
11% over 4 years.

Another interesting statistic is that over 85% of these securities are sold in the US capital market, and this for several reasons. The American capital market is the
largest in the world; the US financial landscape is also the largest in terms of both insurance and reinsurance premiums; the market for insurance-linked risk effectively originated with the catastrophe-linked options and futures introduced by the Chicago Board of Trade (CBOT) in 1992; and there has been openness to financial innovations in the US capital market.

Globalization, however, alters this frame of reference and it also poses some interesting questions in terms of capital market response in the different G-10 countries. Another intriguing query is what sort of information will be necessary for an effective securitization of operational risk at large, and of terrorism risk in particular. The answer is polyvalent and it includes:

- Op risk identification
- Impact of each op risk type
- Frequency of each op risk type
- Evidence on op risk management capability, and
- Documentation on precedence.

Transparency is critical. Statistics must come in a factual and documented manner from company reports, certified financial accounts, operational accounts, statutory reporting, security rating agencies, and other market players providing reliable information. Unavoidably gossip, too, will be part of the picture.

Lack of transparency as well as obsolescence and/or unreliability of information would severely damage the securitization of operational risk. The management of op risk databases will pose major challenges as the volume of operational risk information continues to grow – while the data itself is confusing, mostly out of date, and there are no easy ways of establishing what is true and what is false.

The role of insurers and reinsurers and their capital adequacy needs rethinking, because many of them will act as interfaces between operational risk securitization and its appeal to the capital market, in a way similar to what they now do with CAT. There will, also, be sidelines. For instance, Swiss Re and the American International Group (AIG) are in the business of providing their corporate clients with contingent capital – such as sub debt and equity lines of credit – while the capital market is attracted by more classical forms of catastrophe-linked bonds.

14.6 Lloyd’s record losses with 9/11: a prognosticator of future red ink?

On 10 April 2002, Lloyd’s broke with 300 years of tradition by announcing a move to annual reporting. It also revealed record £3.11 billion ($4.81 billion) losses following the 11 September 2001 terrorist attacks in the United States. Lloyd’s reforms included another novelty, by proposing to scrap the existing system of ‘names’ (that is, investors who underwrite risk on an unlimited liability basis, see Chapter 12).

At Lloyd’s terrorist events had a major financial impact as, after 11 September 2001, the insurer made cash calls on its members, totalling £1.34 billion ($1.88 billion). The news also painted a gloomy retroactive picture for 2000 and 2001 by
making reference to a torrent of red ink. Christopher Stockwell, of the Lloyd’s Names Association, called the results ‘appalling’.4

Aside from the huge liability for 9/11, Lloyd’s faced other losses totalling £371 million ($519.5 million) stemming from exceptional catastrophes in 2001, including the Petrobras oil rig disaster off the Brazilian coast, the attack on Air Lanka airplanes in Sri Lanka, Tropical Storm Alison in the US, and the Toulouse factory explosion in France. Lloyd’s chief executive Nick Prettejohn said: ‘We have paid a heavy penalty for the poor businesses in the market. Our bottom quartile of syndicates was responsible for two-thirds of our losses from 1999 to 2001.’5

There have also been a couple of other significant events in Lloyd’s long history. In terms of financial reporting Lloyd’s usually publishes accounts three years in arrears. However, in early April 2002 it announced 2001 figures, saying the decision to report on an annual basis was in line with proposed reforms to modernize the global insurance market. The careful reader should notice, however, that this global insurance market last made a profit in 1996.

Lloyd’s market needed to reform if it was to retain its position as a global insurance center. As for the 9/11 losses, insurance experts said they are staggering, but they are only part of other losses adding up to much higher figures. Also announced in April 2002, Lloyd’s 85 syndicates posted losses of up to £1.9 billion ($2.66 billion) for 1999, compared with Lloyd’s £1.67 billion ($2.4 billion) loss forecast a few months earlier, in November 2001.

At Lloyd’s, as elsewhere, the terrorist attacks have led to a shift in conception of the risks modern societies face as well as of the sheer magnitude of a potential insured loss. The aftermath has been rising prices of catastrophe covers, as shown in Figure 14.3 reflecting the fact that the newly shaped landscape involved extraordinary cumulative consequences.

The silver lining has been a more general level of understanding about insurance and the complexity of managing and transferring risks. Insurers and reinsurers came to appreciate this process is not always as well developed as it should be. Therefore, they started to realize the importance of:

![Figure 14.3 CAT covers in the global insurance market have been rising by 25% since 9/11](image-url)
■ Creating new knowledge, and
■ Further the understanding of extreme events.

Both are instrumental to the comprehension of risk management. As cannot be repeated too often, experimentation is not just the better approach, it is the only approach possible when faced with new risks as well as old ones which change their pattern.

Lloyd's huge losses brought to the reader's attention in the opening paragraphs of this section were not just one entity’s misfortunes, as it might appear to be at first glance. The reason why they have been included in this text is that they mirror what has happened in the insurance industry at large. The crucial question then becomes: Can the events we have just reviewed be a prognostication of future red ink? And if this happens:

■ Will the insurance industry be able to fulfill its conceptual obligations regarding mega-risk losses?
■ Is global insurance diversification work, with loss spread widely between insurers and reinsurers, the answer?
■ Or will the revealed weaknesses in the insurance industry regarding extreme events cover lead to deeper structural change than presently thought?

One of the worries expressed by insurers in regard to the last query lies in the fact of capital depletion (among insurers and reinsurers) because of the dual impact of

![Figure 14.4](image-url)
Figure 14.4 Capital depletion among insurers has been greater on the market risk side, compared to 9/11. (Statistics from the Geneva Association, General Information No. 173, October 2002)
huge losses due to technical risk and of even larger losses due to market risk hitting the insurers portfolio, and therefore their assets. As Figure 14.4 shows,

- During the 2001–2002 timeframe the market risk at $53 billion to $55 billion has been higher than the presently conceived cost of technical risk relating to 9/11.
- Against this huge depletion of assets, there has been in 2001 and 2002 a relatively meager inflow of new capital at the level of $31 billion; two-thirds of it in 2001.

One of the reasons capital depletion is a worry is that the high water mark of technical risk and operational risk is so unpredictable. Take the case of ports and airports as an example. There are 18.5 million containers that arrive in the US every year by truck, railcar, and sea. These containers constitute an economic lifeline, but also a major operational risk. Statistics indicated that:

- Only 5% of vehicles crossing in from Canada or Mexico are physically inspected.
- At 361 coastal and inland ports, through which 95% of US international trade flows, just one or two of every 100 inbound containers are ever opened.

All this is fertile ground for terrorists seeking to transport biological weapons, lethal chemicals, or home-made nuclear weapons. The port of entry could be a tempting target for an attack. Therefore, ports and airports present an operational national security risk. What is more, the control of this operational risk is diffused between port authorities, airport authorities, and half-a-dozen federal agencies, including Customs, Coast Guard, Drug Enforcement Agency, Attorney General, and the Treasury – though this may change with the new home security agency.

To be in charge of risk involved in a complex situation like the one just described, not only port/airport authorities and insurers have to learn how to assess and manage the new risks, but also financial analysts and rating agencies have to be educated as to the extremely high and unpredictable loss potential. To do their homework, insurers and reinsurers have to look very carefully into:

- Coverage, clauses and wordings, updating the definition of risk, insured perils and excluded perils
- Limits traditionally established to restrict the scope of covers that have become obsolete,
- Pricing risk exposures adjusted to technical risk and operational risk by type, country, loss experience, and prognostication.

No doubt, a crucial role will be played by astute risk management, using scenarios, statistical inference, and stress testing connected to extreme events, including terrorist attacks. This means, however, that there is a crying need for enhancing the analysts’ skills to investigate for correlation between business lines, scrutinize underwriting and operational risks, develop alternative risk transfer products, and address capital requirements for unexpected catastrophe events well before these take place. As we have seen, simulations and drills can be instrumental in assuring an insurer’s and reinsurer’s solvency.
14.6 Governments as insurers of last resort: a precedent with deposit insurance

A critical message the preceding sections conveyed is the urgent need to improve risk management in order to solve the uninsurability problem. A methodological way to do so is to understand the frequency, severity, and exposure to potential claims, secure adequate financial staying power, and price insurance coverage in a factual and documented way. Hard work, not miracles, should be the means of finding valid solutions to insurability.

In parallel to this, insurance and reinsurance companies should create a better public understanding about the role and the importance of their business for the modern economy. This means bringing into the picture the insurability or lack of it of extreme events, like terrorism risk, and therefore the need for assessment of public sector intervention.

An integral part of this argument is the fact that one of the responsibilities of the state in an economy is to provide internal and external stability. Therefore, protection is required against risks associated with events that exceed the private sector’s capacity to be in charge – but this must be done without creating conditions of moral hazard (see Chapter 11).

Bank bailouts provide a precedent. The Introduction to this chapter made reference to the origin of the term ‘insurer of last resort’; the very first ‘last resort’ bailout on record was done nearly twenty centuries ago by the Roman emperor Tiberius, in 33 AD. The Roman banking system had failed as a result of fraud, defaults, liquidity crisis, sinking of uninsured cargoes, and a slave revolt. The state felt that it had to act. In their modern sense, the way we know them today, the so-called government safety nets were really invented in the twentieth century, and with them (at least in some countries) bank bailouts at taxpayers’ expense become rather commonplace. Fitch Ratings says that only one out of five banks that fail go bankrupt. The other four simply get bailed out. Bailout policies became more controversial as:

- The externalities associated with the failure of a single bank increased, and
- Moral hazard and the penalization of taxpayers grew with the amount of money spent on bailouts.

In a similar way to bank bailouts, because the cost to insurers from the events of 11 September 2001 has been so high, the US taxpayer is called into the picture as potential insurer of last resort. This has already happened with government support for airlines, on the grounds that the US transport system will otherwise be crippled.

Similarly, with insurance companies the public risks seeing the insurance policies it has against extreme events like terrorism cancelled. If this happens, it will indeed be a most critical problem for the economy and all of its agents.

But is the US government’s pledge to absorb the losses insurers would face from future acts of terrorism, in order to persuade the industry to continue offering policies, a rational one? On 24 October 2001, some 6 weeks after 9/11, Treasury Secretary Paul O’Neill warned that many businesses might find it impossible to renew their policies against terrorism at the end of 2001,
 Neither because insurers would refuse to take the risk,
 nor because premiums were so high.

 What has happened since then in no way substantiated what O’Neill told the US Senate Banking Committee: ‘The economy is facing a temporary, but critical, market problem in the provision of terrorism risk insurance.’ However, O’Neill’s remarks had followed an October 15 proposal by president George W. Bush about propping up the insurance industry to the tune of as much as $229 billion over three years with this scenario:

 - The first year, the government would pay 80% of claims on the first $20 billion in damages, and 90% on the next $80 billion.
 - But in years two and three, insurers would be responsible for larger shares of the cost, with the industry’s exposure capped at $70 billion.

 ‘This plan can be sold on Capitol Hill as short-term emergency relief, just like food and blankets for flood victims,’ said analyst Steve Blumenthal of Schwab Capital Markets. But others were not so sure. As New Jersey senator Jon Corzine, formerly CEO of Goldman Sachs, suggested: ‘It just strikes me that this exposure is very, very high.’

 The counterproposal to blanket coverage has been to let the Federal Deposit Insurance Corporation (FDIC) handle the claims. Since FDIC’s institution after the Great Depression, individual banks have over the years paid small premiums that cover all banks’ depositors against potential losses. FDIC, like any good insurance plan, spreads risks instead of ducking them. There is also a precedent in France, where natural catastrophes are handled through this type of contribution to a fund by insurance companies.

 Given the FDIC’s success, a deposit insurance restructured in a way commensurate with assumed risk by insurers and reinsurers looks like being the better solution. Let’s recall, however, that with the exception of the US, deposit insurance necessary to prevent runs on the bank typically focuses on small deposits.

 There exist different schemes of deposit insurance. In the United States credit institutions contribute proactively to the FDIC fund a small share of their income, and for every individual bank depositor FDIC pays up to $100,000 in the event that the bank fails. This is not the case in Switzerland, where up to CHF 30,000 ($20,000) in deposits is privately guaranteed by the Swiss Bankers Association (SBA).

 - Unlike FDIC, SBA will collect the funds after the fact.
 - It will have priority in the liquidation of assets, and
 - It will ask other banks to contribute money, if necessary.

 Solutions able to address huge losses, like those associated to terrorism, may make necessary both an ex ante and a post mortem approach. Nevertheless, whichever its exact rescue operation might be, deposit insurance will have to be characterized by caps on the guaranteed amount. Also, the capital for deposit insurance has to be permanent, available at the time of insolvency, and accessible in the jurisdiction of liquidation.
These conditions are difficult to meet in a globalized insurance industry, as they are
difficult to meet in globalized retail banking. Therefore in the latter case several
regulators now prefer locally incorporated subsidiaries of global banks subject to the
law of the land.

There are also other requirements important to both an insurance solution for risks
associated to global catastrophes, including terrorism, and to global banking. These
are best expressed by the results of a meeting of representatives of supervisors and
legal experts of G-10 central banks on 14 December 2001 at the Basel Committee
headquarters.

The focus of that meeting was on banking activities and on the possibilities of
preventing the global financial system from being misused to support terrorist
activities. The participants agreed this cannot be achieved unless financial service
providers have in place effective know your customer (KYC) and customer due
diligence (CDD) policies and procedures. Similar concepts should apply with
insurance coverage addressing supercatastrophes – as well as reinsurance. The insurer
of last resort should thoroughly know its global ‘customers’ and exercise due diligence
in covering, at least partly, extraordinary claims.

Notes

1 A.M. Best, Special Report, September 2002, Oldwich, NJ, USA.
2 D.N. Chorafas, Credit Derivatives and the Management of Risk, New York
3 D.N. Chorafas, Credit Derivatives and the Management of Risk, New York
4 Financial Times, April 2002.
5 The Daily Telegraph, 11 April, 2002.
Part 4

The importance of cost-consciousness in operational risk control
15 Deficient cost control is the result of management risk

15.1 Introduction

Poor management, high overhead, and lousy cost controls correlate among themselves and with operational risk. Runaway costs are an operational risk that can morph into credit risk and market risk, as this chapter demonstrates through examples from the banking industry. Credit institutions that are not in control of their costs are usually characterized by weak management and a steady drift in their financial staying power.

Costs tend to grow over time, and this is particularly true of overhead. Overhead means bureaucracy. As an opening salvo, let’s look at the case of IBM. The company, which was very efficient in the 1950s and 1960s, drifted in the 1970s, and was well on its way to extinction in the late 1980s/early 1990s. By early 1993, IBM was collapsing under the weight of its own bureaucracy. Some 26%, or more than one out of four of its 90,000 employees in the Europe, Middle East, and Africa (EMEA) area of operations were riding desks, operating in ‘support’ rather than frontline functions.

If this happened in a company whose computer solutions were expected to wipe out paperwork and bring efficiency to its customers, think about companies where paperwork is core business. Bureaucracy is acting as a substantial drag to efficiency. It also breeds operational risk because much of its strength lies in an informal system of political alliances that does not permit any challenge to, let alone an attempt to correct, what is going wrong. The origins of operational risk cannot be taken care of:

- When management is more interested in pushing paper than in taking action,
- Or the executives are hanging on by their fingertips and are afraid to step on each other’s toes.

This book has given plenty of evidence that only rigorous studies supported by top management and the will to challenge the ‘obvious’ can bend the operational risk curve. Figure 15.1 offers a three-dimensional frame of reference for operational risk studies, which I found quite useful in judging op risk control approaches and their likely effectiveness. At the top is cost under a dual perspective.

- Cost of overhead and of dead wood.
- Cost of the operational risk control solution itself.
Speaking from personal experience, a number of companies have no idea what their costs are, which is evidently silly. While operational risk must be controlled in a rigorous and determined manner, both cost and return on investment should be taken into account. As Figure 15.1 shows, their relationship is not characterized by a straight line but by a U-curve. Throwing money at the problem solves nothing. Optimization is, therefore, absolutely necessary.

What I have said in the preceding paragraph is that much more true as the overall cost of operational risk control will, in all likelihood, end by being quite high. The exact level is only an educated guess, and it will no doubt depend on several factors. An estimate I have heard from several banks – and one that does not look unreasonable – is that the cost of operational risk analysis and the necessary action for an effective control system will roughly equal that of the year 2000 (Y2K) problem.

15.2 The low cost producer holds the upper ground

Whether its line of business is in finance, manufacturing or merchandising, no company can escape the golden rule that its profitability and its long-term survival depends on its ability to be a low cost producer. In 1979, Chrysler had to sell 2.3 million cars and trucks to break even, and it was selling 1 million. The company went bankrupt, saved at the eleventh hour by a loan by the US taxpayer.
But by 1982 Chrysler’s new management reduced the break-even point to less than half – just 1.1 million cars and trucks. It also increased its auto market share through a hard sales drive. With sales reaching 1.4 million units, Chrysler became profitable, repaid the government’s 2 billion dollars loan, and returned good value for its shareholders – until a change in management ran the company down once again. There is no better documentation that high costs are part and parcel of management risk than Chrysler’s example.

A similar principle is valid in banking, particularly so because in a credit institution’s non-interest budget between 70 and 75% of all costs are human costs. Beyond that, 66% of all human costs are managerial and professional costs, even if the managerial and professional personnel is less than a third a bank’s employment. As these statistics show:

- Roughly 50% of all non-money costs are at managerial/professional level, and
- That’s where a focused study on cost control should start, rather than at rank and file.

Costs matter. Every cost item counts, and personnel costs should be at the top of priorities. Quoting from an article in BusinessWeek: ‘In Germany, Citibank Privatkunden boasted a cost–income ratio of just 44 percent in the first nine months of 2002, 40 percent to 50 percent below those of big private banks retail operations.”1 (See also Table 15.1.)

When greater management efficiency achieves 40–50% savings in overhead, compared to costs of competitors, then there is money to invest in effective control of operational costs. At the same time, however, it is a fallacy to think that ‘more money’ will solve the operational risk control challenge. As I never tire repeating, throwing money at the problem does not solve it: it only makes it worse.

A bank cannot be an employment outfit trying to solve social problems single-handed. That is not its mission. The bank has a responsibility to shareholders as well as to customers. If it is overmanned, and its non-interest budget is overfat, then it has

<table>
<thead>
<tr>
<th>Bank</th>
<th>Overhead (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Royal Bank of Scotland</td>
<td>43.7</td>
</tr>
<tr>
<td>LloydsTSB</td>
<td>46.3</td>
</tr>
<tr>
<td>Barclays</td>
<td>51.5</td>
</tr>
<tr>
<td>HSBC</td>
<td>56.8</td>
</tr>
<tr>
<td>Commerzbank</td>
<td>57.8</td>
</tr>
<tr>
<td>BBVA</td>
<td>57.9</td>
</tr>
<tr>
<td>Crédit Agricole</td>
<td>57.3</td>
</tr>
<tr>
<td>BNP Paribas</td>
<td>63.4</td>
</tr>
<tr>
<td>UBS</td>
<td>75.5</td>
</tr>
<tr>
<td>Deutsche Bank</td>
<td>83.7</td>
</tr>
</tbody>
</table>

Source: BusinessWeek, 29 July 2002

Table 15.1 Major differences in overhead of banks
to slim down. Otherwise, it will not perform its duties in an able manner, and therefore it will not survive.

In the highly competitive market developed by deregulation, globalization, and technology, a great deal depends on management’s determination to offset labor cost pressures. Specific cases of how a company deals with its labor cost problems are instructive. It is not easy to be ahead of the curve. In spite of the significant personnel reductions by investment banks in 2001–2002, many among them remain overstaffed because their business has fallen.

Among investment banks, Dresdner Kleinwort Wasserstein (DKW) is an example. Crédit Suisse First Boston is another. Both have been hit by rising labor costs, and this has been an issue that concerned not only their shareholders but also analysts looking into such labor cost problems – which have often been a reason for bearishness on a stock. Excuses for high labor costs can always be found. Some companies have been citing higher costs because of tasks associated with the Internet, intranet, enterprise software, and others requiring technology experts.

Now for the intriguing part: many companies responded to cost pressures by implementing a 5–10% or more across-the-board employee reduction. ‘Across the board’ is the wrong solution. Cutting the fat with a sharp knife is necessary, but it has to be precise – often by exiting one or more product lines and chopping off its payroll, top to bottom. When I am confronted with cost control problems, I look at two patterns:

- One inside the organization, over a period of 15–20 years.
- The other in comparison to an industry standard, or at least industry average and spread.

Study and comparison of similar chapters in internal costs can speak volumes on how well the company is managed at the cost control end. If the credit institution operates globally, it is revealing to compare the cost control performance of one location against another. As is not always appreciated, significant differences can exist within the same bank in different countries. For instance, the overhead of Allied Irish Banks has been:

- 50% in its AIB Irish operations
- 54% in its AIB British operations
- 64% in its AIB Allfirst in the United States.\(^2\)

The external comparison pattern evaluates cost performance of the company under examination against its peers. In my experience, this can reveal a horror story of costs that have gone out of control. An example is given in Table 15.1. Between Royal Bank of Scotland, the best in the sample, and Deutsche Bank, the difference is nearly 1:2. There is no reason for such discrepancy, except that management makes the difference, though some other conditions also carry weight. For instance, in Germany bank personnel are paid more than people working in other sectors of the economy, as shown in Figure 15.2.

Management lax in cost control should remember that pre-tax profits and the cost of doing business correlate. This is documented in Table 15.2, which compares the
results of six different investment banks. Look at ‘profit per employee’ as the most significant figure. Between the best and the worst performer, at the time these statistics were made available, the difference is nearly 1:22.

Frederick Winslow Taylor, the father of scientific management, once said that if the difference in productivity exceeds a ratio of 1:2.2 then there is something wrong with management. Just to pre-empt a possible criticism of the table let me add that one might think the 1987 statistics are obsolete. Not so. Big differences exist all the time, year-after-year. Only the names of mismanaged banks change.

<table>
<thead>
<tr>
<th></th>
<th>1987 pre-tax profits ($m)</th>
<th>Profits per employee ($000)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lazard Freres</td>
<td>134</td>
<td>183.5</td>
</tr>
<tr>
<td>Morgan Stanley</td>
<td>364</td>
<td>56.0</td>
</tr>
<tr>
<td>Salomon Brothers</td>
<td>225</td>
<td>37.5</td>
</tr>
<tr>
<td>First Boston</td>
<td>120</td>
<td>22.0</td>
</tr>
<tr>
<td>Merrill Lynch</td>
<td>391</td>
<td>9.0</td>
</tr>
<tr>
<td>Paine Webber</td>
<td>110</td>
<td>8.5</td>
</tr>
</tbody>
</table>

Source: BusinessWeek, 30 May 1988

Table 15.2 Earnings per employee among investments banks
Experts suggest that in 2002 Citigroup has been the best cost-cutter in the industry. Other banks have laid off thousands of people but still carry more fat than the passenger list of a cruise liner. This is poison when a financial institution is operating at less than maximum capacity, while its headquarters is still overfat and overloaded with unnecessary costs.

In other industries, too, significant differences exist in cost performance. An example from airlines, a service industry, is presented in Table 15.3. In this sample, the

<table>
<thead>
<tr>
<th>Airline</th>
<th>Cost per seat mile (US cents)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Southwest</td>
<td>7.7</td>
</tr>
<tr>
<td>America West</td>
<td>8.8</td>
</tr>
<tr>
<td>Continental</td>
<td>9.7</td>
</tr>
<tr>
<td>Northwest</td>
<td>10.0</td>
</tr>
<tr>
<td>Alaska</td>
<td>10.0</td>
</tr>
<tr>
<td>Delta</td>
<td>10.3</td>
</tr>
<tr>
<td>American</td>
<td>11.1</td>
</tr>
<tr>
<td>United</td>
<td>11.4</td>
</tr>
<tr>
<td>US Airways</td>
<td>12.5</td>
</tr>
</tbody>
</table>

Table 15.3 Airlines that want to survive cut costs (November 2001 statistics)

Figure 15.3 Overhead ratio at Bank of America: expenses as percentage of revenues
Deficient cost control is the result of management risk. The best is Southwest Airlines. The worst case is US Airways, which has gone bankrupt. It is appropriate to take notice that the correction of a cost situation that has gone out of control is a rewarding exercise. An example is given in Figure 15.3 with Bank of America. In the mid-1980s its overhead had run wild – equal to the worst case in Table 15.1. Then, over a period of less than two years, a new management was able to trim the overhead by nearly 25%.

15.3 Alert companies are in charge of their risks and of their costs: Berkshire and TIAA

What cost-restructuring can produce in terms of economic accomplishments, in the absence of any cost of inflation pressures, is still not well known. But some of the more astute analysts are stating that the consciousness that costs matter has been a fundamental reason for the success of some companies in riding the wave of bad market news in the 2000–2002 timeframe.

Indeed, it has been widely known for over a decade that the banking industry needs to consolidate as the demographic profile of the United States and of Europe creates excess capacity. Consolidation is not only done through mergers. Banks that aim to survive shrink their costs and make their operations more efficient. They are also using technology to reduce working capital.

It comes as no surprise that in every sector of industry this process has become a major stockmarket theme, though many companies pay it only lip service. Financial analysts think that a process of sharp cost-cutting and consolidation should characterize all sectors of the economy: from banking and retailing to even government itself. This section presents two of the best examples of today in senior management efficiency.

The first example is Berkshire Hawthorn. Its overhead ratio is 1/250 of that of most mutual funds, and its after-tax cost of running the business has come down to 0.5 of one basis point of capitalization. By contrast, many mutual funds are at the level of 100 to 125 basis points relative to capitalization. The difference is by no means a matter of ‘luck’.

More than 40,000 people work for Berkshire, but the group is run by only 12 people at headquarters. This is one of the best examples of a truly efficient management operation. ‘We hope to grow a lot. However, we don’t hope to grow at headquarters,’ says CEO Warren Buffett. His very small headquarters staff is motivated and works diligently, with bureaucracy being a dirty word.

The careful reader would contrast this culture to that of many financial institutions, as well as plenty of other organizations that are Fat Cat companies. Their inefficiency can be easily detected by their runaway overhead; section 15.2 presented several examples. Cost-conscious companies have a different pattern. They are thrifty on overhead because they understand that fat cats don’t survive.

Another excellent example of overhead efficiency is TIAA. The Carnegie Foundation for the Advancement of Teaching established the Teachers Insurance and Annuities Association (TIAA) in 1915, with an endowment of $15 million. Subsequently, TIAA created the College Retirement and Equity Fund (CREF)
investing in securities. Today, TIAA–CREF owns about 1% of all US stocks. It is also a very efficient organization, with an unusually low overhead:

- 0.25% for TIAA
- 0.40% for CREF

As the Berkshire and TIAA examples document, cost control is a culture. Mere lip service to the reduction of overhead leads nowhere. Compared to the examples I have just presented, even after a supposedly radical downsizing, many banks remain overstuffed because they have failed in taking a factual and documented view of what is really necessary. They have also been unable to conduct a qualitative and quantitative analysis of their cost factors.

The quantitative expression of cost factors and their appropriate allocation is an integral part of cost control. As basic cost accounting theory teaches, a number of decisions are necessary to properly divide costs into fixed, semivariable, and variable. The fixed costs and some of the semivariables are joint costs incurred in one area for the benefit of many others – provided that there is such benefit.

This is not the usual case. High overhead is organizational fat that goes undetected, or at least uncontrolled. There are two ways to cut it down. The one is the CEO’s initiative and decision to stick to a low overhead diet. Berkshire and TIAA are examples. The other is a meticulous standard cost study. That’s where Taylor and the Galbraiths have made their contribution.

The first consistent effort to measure the results of labor was directed at the production floor. Known as time study, it started with F.W. Taylor at Bethlehem Steel just prior to World War I. The so-called scientific management (of labor) continued with the motion study developed by the Galbraiths during the inter-war years. Time and motion approaches are not necessarily applicable to management, though standard cost tables (like MTM) and the ratio delay study (of post World War II years) might be.

As far as the financial industry is concerned, Taylor’s contribution is a milestone, not because of the mechanics of his time study but for the reason that no other effort in modern business history inspired such strongly held views and left such a legacy. ‘Work better for more pay’ was Taylor’s credo. To many who like to take it easy, he was a dangerous radical intent on upsetting the equilibrium of the factory, which was at the time low wages for low output.

Perhaps the fact that there were no moderate opinions of Taylor had to do with his own temperament. ‘A man of immense spirit, intelligence, and tenacity, he managed to alienate, or at least irritate, almost everyone, including many of his own circle of admirers,’ says Robert Kanigel.

- Rational inquiry into all aspects of industrial productivity is a necessary precursor for automation and modern business practices.
- The cornerstone is analysis focusing on both ideas and actions, packaging them and projecting into the future.

Quantification is still a valid approach to labor productivity, but due to the increasing automation of the production process its impact has shrunk to the benefit
Deficient cost control is the result of management risk of a joint qualification and quantification approach. Most importantly, the intellectual nature of financial work does not lend itself to quantitative measurements of the sort the foregoing paragraphs have suggested.

- By contrast, a ratio delay study can indicate whether or not a person is busy.
- Cost comparisons, like those presented in section 15.2, will provide an indicator of competitiveness in the job being done.
- Quality control will tell a good deal about the quality of a person’s work and the imagination he or she applies in the business.

The first two bullet points explain why a standard cost system is important. The third point brings qualification into the predominantly quantitative characteristics of the first two. An example on how to apply management control is Six Sigma (see Chapter 8). All three approaches are vital to a system solution, and therefore they should attract the attention of management.

In spite of a great deal of talk about better performance, and its impact on shareholder value, few financial institutions have established a performance measurement system based on standard costs. Based on research findings, Figure 15.4 provides some interesting statistics. What is important to keep in mind is that unless we can measure the variable we are after – whether this is operational risk, a cost factor, or anything else – we will not be able to control it.

![Figure 15.4 Stage of development of a performance measurement system](image)

Figure 15.4 Stage of development of a performance measurement system
15.4 An example of controllable technology spending

Without standards against which to gauge our performance, there can be no documented opinion regarding how well or how badly we are doing in our job. Every well-managed company should look at the overhead of Berkshire and TIAA as the strategic frame of reference – while standard costs assist in providing the tactical framework for cost control and overhead expense. An equally important standard is to require managers to spell out return on investment (ROI) on the expenditures they ask for.

The calculation of an objective return on investment must take into account not only costs, including administrative costs, but also the risks being taken with the investment. Risks are always present, including operational risks. With financial investments, for example, risk increases as the instrument in which a company or a person is investing assets becomes more complex or, alternatively, includes a number of unknowns that have not been appropriately researched.

- Complexity means there are a greater number of unknowns.
- In practice, every time the term ‘enhanced’ is used by investment advisors, risk goes up.

For instance an ‘enhanced’ fixed income portfolio may have junk bonds in it. It is enhanced in the sense its average interest rate is higher, but also it represents more exposure of which the investor is not always aware. While all bonds have credit risk; junk bonds have much higher credit risk than others. All bonds also have interest rate risk, which is market risk, and there are operational risks in their handling.

Return on investment should also be key to budgetary appropriations for information technology. The reader will recall from Chapter 5 that well-managed banks have established a 20–22% return on IT investments. If this is documented when budgetary appropriations are done then, and only then, the IT budget may go up to 22–25% of non-interest budget. For instance, in their time of glory both Bankers Trust and the Mellon Bank had established a policy of 20–22%, or better, ROI. How has this return on investment been calculated and what was the overall policy?

‘We are bankers,’ said George di Nardo, the member of the executive board at Mellon responsible for IT. ‘If we can document a 20 percent ROI, we would not hesitate to put more money in technology.’ Higher productivity at managerial and professional level was one of the lucrative ways to gain greater return. At Bankers Trust:

- There was an R&D budget for information technology with no quantitative ROI target attached to it – but marketing had to approve this budget.
- Every other expense in technology was an investment with quantitative return, ROI being calculated chapter by chapter, and
- Every project of over $500 000 was audited post mortem in terms of obtained return on investment results.

This is a much better solution than a usually superficial feasibility study on new technology, which is largely guesswork and provides non-controllable deliverables. At both Bankers Trust and the Mellon Bank, return on investment criteria changed the way
Deficient cost control is the result of management risk

Deficient cost control is the result of management risk, looked at information technology, its deliverables, and its costs. The policy at Bankers Trust was that for every payroll dollar the bank saved from the use of state of the art IT, it invested 40 cents in technology. This left 60 cents in profits.

How are IT costs being controlled? In many cases in which I have been personally involved in IT restructuring, cost-effectiveness has been the rule. There is much that can be achieved by scrutinizing every expense, zero budgeting being a good method. This means putting on active status every IT expense chapter and every development project.

Bank-to-bank, and bank-to-outsourcer comparisons help. In one IT restructuring project I had found that the cost of in-house software developments varied between 1 and 10 depending on the policies followed at subsidiary level and the quality of project management (see also section 15.5). Other things being equal, banks that run an efficient IT are those which:

- Have made an accurate calculation of costs pertaining to computer and communications services, and
- Are running their IT end-to-end, as profit center, billing the end-user.

Costing and billing are an integral part of controlling expenditures associated to banking services. This statement is just as valid of costing the services themselves, as it is of tracking computer costs all the way to banking products and into product pricing. Alert companies are in charge of their costs.

One of the global banks to which I was consultant to the board, developed a first class network, which worked round the clock at 99.9% reliability (see Chapter 5). The problem, however, was cost. The user departments billed for the network’s services rebelled against the bills they got. Costs had to come down.

A study was done to establish competitive prices, in collaboration with AT&T, British Telecom, Sprint, and a couple of other phone companies. The board decided that the network bills should be set at 10% below the average of these five tariffs simulated to reflect the pattern of the bank’s operations. Costs had to be cut near to the scalp. This was done through computer aided design (CAD) for network maintenance. The challenge was met.

One cannot blame the user departments for pressing for lower costs. As profit margins come under increasing pressure from competition, fees and service charges are becoming more important as sources of revenue. If those fees are to contribute to the bottom line, they must be rationally calculated to cover costs and leave a profit – yet they should not be as high as to be non-competitive. The answer is tough internal cost control, while assuring the bank’s technology has an impact on customers,

- Giving much more timely information about the customer’s overall relationship with the bank
- Identifying business opportunities that may be hidden, and
- Permitting risk to be managed more effectively any time, at any place, for any transaction.

This process calls for firm foundations. Realistic pricing, based on comprehensive cost analysis can be a major factor in assuring that fee income covers all costs and
contributes to the bank’s bottom line. Controlling costs, however, should never be used as a reason for lax operational risk control – or, more generally, for substandard global risk management.

Behind advanced IT initiatives lies the fact that all resources at the bank’s arsenal must be integrated and support one another. In this, databases play a pivot role (see Chapter 5). One of the patchworks tried in the past, with no results worth mentioning, has been the building of data warehouses, a superstructure on multiple, heterogeneous, and overlapping databases aimed at pulling management data together. This is creating redundancies, delays, and lots of errors, which lead to:

- Non-competitive response to customer requirements, and
- Increase in the operational risk being assumed.

In contrast to such patchworks and substandard systems, competitive approaches require an integrated approach, able to take information about a whole range of transaction types and exploit it in real-time. Integrative solutions and interactive computational finance help to develop patterns of risk profiles right across a broad range of instruments and clients.

The reason why I emphasize these issues in a chapter of cost control is that, in my experience, in the majority of cases the true role of modern information technology has not been fully understood. Only the best managed companies are in charge both of their risks and of their costs. They build an integrated technology architecture, at affordable cost, to cover all the instruments which the bank trades and all the processes serving these instruments.

In conclusion, any-to-any real-time solutions change the way the bank views its business. But there is a strong need for reengineering with both quality and cost control targets. This requires rethinking the way of doing IT operations, along the lines suggested in this section.

15.5 Isaac Newton appreciated that throwing money at the problem leads nowhere

In banking, advanced technology solutions are inseparable from rocket science, which is a culture and an investigative attitude – not just mathematical skills and tools. Isaac Newton was the first rocket scientist on record. By becoming the Warden of the Royal Mint, he transferred his skills from mathematical analysis, the study of gravity, and optics, to economics and finance.

History books say that Newton’s involvement in economics was in conjunction with the efforts by Charles Montagu, the Chancellor of the Exchequer, to redress British finances and introduce a new currency. Montagu wanted this new currency to be much better controlled than the old. He saw this as an urgent task because:

- The element of trust in the old coinage had been eroded, and
- Commerce was breaking down because of lack of business confidence.

Old coins recalled and melted down actually weighted only 54% of their legal weight because of chippers and counterfeiters, and the troubles were much broader than
Deficient cost control is the result of management risk. Therefore, there was an urgent need to reconstruct the entire financial infrastructure of England, and only the best minds could measure up to this job.

Newton’s contribution to the British Treasury proved to be invaluable, largely thanks to his conceptual and analytical skills which he had already demonstrated through his work in mathematics and physics. At the time of his death, his library contained 31 volumes on economics (an impressive number in the early eighteenth century) which evidence suggests were among the most used books in his collection.

A pragmatic approach to economics was only one of his endeavors. Immediately after being appointed Warden at the Royal Mint (and before becoming Master), Isaac Newton concerned himself with how to increase the efficiency of the minting process. He carefully watched each step and carried out a time and motion study, well before F.W. Taylor did so (see sections 15.2 and 15.3). Newton:

- Calculated where and how improvements could be made, and
- Analyzed the process of minting in every detail so that he could materialize such improvements.

This is precisely what needs to be done for operational risk control reasons, as well as for cost control in business today. The answer is not in spending more money, but in planning meticulously how it is spent and what is the ROI. Notice as well that on repeated occasions Newton applied his mathematical skills to cost analysis, and this led him to clash with greedy government contractors.

Quoting from Michael White’s biography of Newton: ‘Long years of study and practical work at a quite different furnace had enabled Newton to calculate that one troy ounce of alloy for the production of coins could be produced at a cost of \(7\frac{1}{2}\)d. So when the financiers . . . submitted tender of 12\(\frac{1}{2}\)d. per pound, Newton called their bluff and forced them down.’

This is precisely what banks need in running their technology in an efficient manner. Spending large sums of money on information technology without bothering about return on investment has become a tradition for many banks. Only among well-managed institutions does the board ask about benefits that will be derived. Long-term, quite large IT projects continue to be implemented as an act of faith rather than as critically assessed investment factors. This is done even when:

- Cost/benefit analyses are not positive,
- Or, large capital expenditures have to be done.

Parkinson’s law dominates the IT appropriations. There are surveys which claim that 65% of large companies are still unable to quantify the contribution of information technology to their business. Most board members and CEOs intuitively believe their investment in IT is ‘absolutely necessary’. Neither, until very recently, have financial institutions paid due attention to the operational risks associated to information technology – their own and that of their business partners.

Yet, as Chapter 5 documented, operational risks are pervasive in IT and related activities, such as conversion procedures like restructuring the entity’s risks archives. Restructuring requires shutting down the bank’s customer systems for a long weekend.
to cut over, involving millions of customer accounts. Another fallacy is that of believing they can seamlessly replace some of the heterogeneous legacy procedures through a job done piecemeal, without an overall strategic plan that includes:

- Training on a modern, competitive IT culture, and
- A new architecture that capitalizes on the latest technological advances.

Beyond these two points, what surprises me is that many banks are not quite aware of operational risks associated with this piecemeal transition. The costs, too, can be important. The bill to a London clearing bank which did this changeover has been over £100 million ($155 million), and this is not a worst case scenario.

While changeovers are necessary to capitalize on the rapid evolution of IT and also, if not primarily, because of the business challenges in the twenty-first century, the cultural change and the architectural solution should come before anything else. Part of the cultural change is aligning information technology investments with business strategy. Among tier-1 banks this has more or less taken place. Another challenge is that of rapidly realigning IT investments and solutions when the business changes quite unexpectedly.

- Clear-sighted industry leaders see this fast adaptation as their salient problem.
- Achieving a low latency level to keep IT investments and strategies aligned is what competitiveness is all about.

This challenge cannot be faced by a fat IT budget. The answer is vision and hard work to achieve zero latency, which allows an organization to direct its product development, marketing and IT money more efficiently. An example on return on investment in the manufacturing industry is the profits coming from a tightly linked Internet sales and on-line inventory management.

- Enriched with agents and sophisticated software for on-the-fly product personalization, and
- Targeting competitive advantages, typically associated with firms able to hold the high ground.

Another example on IT ROI is using technology to keep down the cost of distribution. The real cost of distribution includes much more than pre distribution costs. Any major distribution decision can affect the cost of doing business upstream, at R&D level, and also relate to other cost issues. All of the following elements may prove critical in evaluating the impact of alternative distribution approaches on total costs:

- Warehousing
- Inventories
- Inventory obsolescence
- Supply chain alternatives
- Cost concessions
- Channels of distribution
Deficient cost control is the result of management risk.

Runaway costs of goods sold hit the bottom line, as many companies found to their expense. The example in Figure 15.5 is that of eight computer manufacturers with varying degrees of success in controlling their costs. ‘A’ is the best performer and has the lowest costs of goods sold, which allows it to put more money in sales, improve its market share, and still end up with the best profit figures in the sample.

This new consciousness starts seeping down organizations in different industry branches. According to some estimates, between 5 and 10% of Fortune 500

Figure 15.5 Costs of goods sold, selling costs, and operating margin of eight different computer manufacturers.

- Alternative transportation facilities
- Maintenance of supply chain links.
companies already have in place mechanisms that allow them to re-engineer their cost structure, and revamp their information technology, to take advantage of more efficient solutions. There may also well be another 15–20% that understands the need to do so, rethinking their processes.

15.6 Putting into action a costing and pricing mechanism for operational risk control

In this section, I take software development projects as a proxy for operational risk control projects, because that is where significant experience exists today. What is being written about cases of cost control with software projects is widely applicable and its underlying principles can help with operational risk projects as well.

For starters, once project deliverables, skills, timetables, and costs have been established, it is a simple matter to elaborate a time and expense plan for user-oriented software products and their maintenance. The difficult part is in deciding how to recover these costs through the pricing mechanism of the programming product (see also section 15.4).

Though it is not without its challenges, development work – meaning new programming products – is much easier to cost and price than software maintenance. If for no other reasons, this is true because the term ‘maintenance’ is used to mean different things to different people and different projects. In my book, software maintenance may be necessary because of either of three reasons:

- The law has changed
- There are mistakes in the programming product, or
- The user department requires greater (or different) functionality.

If there are programming errors, then IT should absorb the cost of maintenance, writing it against its profit and loss. By contrast, in the other two cases costs should be chargeable to the user department. For this reason, the cost and time estimate must be approved by the user,

- It should be an integral part of the costing and debiting procedures, and
- The user must have the right to challenge the cost estimate, prior to giving approval (see the example on costing network services in section 15.4).

Hardware and software costing/billing procedures should be defined through formal procedural steps. This is an organizational challenge. To assign factual and documented costs to software development and maintenance, the systems and programming department must have in place a planning and control system. The same is true with operational risk projects. Planning should take several factors into account:

- The job itself and its importance
- The timetable for deliverables
- Skill: knowledge engineers, analysts and programmers
Deficient cost control is the result of management risk

- Salaries applicable to the above classes of people
- Overhead, including supervision and quality control
- Machine time to be allocated per activity within each project

Control is basically a comparison of total planned man-hours with actual man-hours, estimating how much time and cost will be required for job completion. This is a core activity in project management, with quality of deliverables being the other critical component. By relating total direct expenses to project milestones, we position ourselves in terms of costing a programming product. This process is portable to projects for operational risk control.

A costing structure can in no way be insensitive to the profitability resulting from the project. If it were, it would be short-lived and incapable of dealing with the most intricate aspects of management control. Failure to provide this correlation between costing and benefit from deliverables is at the origin of the fact that so many senior bank executives are generally disappointed with the return on their investments in technology, when they see that:

- Their company has not been able to use technology to achieve lasting competitive advantage over their principal competitors, and
- IT expenditures have failed to reduce operating costs in line with expectations, or as promised when the IT budget was authorized.

This should not happen with operational risk control projects. Let’s keep in mind as well that – whether with new software development or op risk control – the cost of developing a certain product cannot be recovered as long as this product is not yet in production. Only when end-users are in the picture from the start of the project, as they should be, they are not so averse to paying some upfront costs to get the service into operation.

There is another positive side to this issue of end-user coinvolvement. Several financial institutions have found, by experience, that by demonstrating the functionality of properly identifying new programming products through prototyping, user level requirements for product development are better understood – and the resulting specifications are more accurate.

- The prototype is, so to speak, an artefact able to convey a message about its functionality, and it is immediately available for testing.
- Shells available for rapid prototyping have permitted investment banks to be way ahead of their competitors in IT deliverables.

Let’s now bring this experience into operational risk control projects. To start with, as the preceding sections have outlined, a key to a solid procedure is the establishment of a budget with time, quantity, and quality of deliverables included. This budget will turn into a development costs fund, recovering expenses, including interest, during production time. Development and production should be based on an initially agreed upon timeframe.

In a real-life project on operational risk control, a costing application made along these lines calculated unit costs by analyzing the effect of various pricing alternatives.
This provided significant insight into cost structures, some of which had escaped management attention.

- Management policies required to allocate operational risk control charges to each unit and product line.
- Other applications areas, such as the distribution of op risk related systems support costs were facilitated by using a similar approach.

With hindsight, it is interesting in this connection that because there were several parameters and standards to understand, several tests were conducted for profiling purposes. Attention was also paid to tools and norms, allowing measurement of the performance of operational risk controls on an experimental basis. This made it possible to:

- Find glitches before they occurred, and
- Institute measures that kept deliverables from op risk control at an acceptable level.

The result of the approach outlined here has been that the cost of each op risk control project could be thoroughly scrutinized and compared to benefits from deliverables. Using budget and expense matrices, management could also make available to itself a plan-vs-actual evaluation. Simulation also went forward comparing operational risk control costs with projected savings, through what if scenarios – with various pricing alternatives.

Projections on savings from operational risk control, by business unit, and charged prices were seen as two interrelated processes. Once the total budgeted costs for operational risk projects were calculated, the prior year’s saving for each op risk control activity were entered and cost/benefit estimates analyzed. The same experience also demonstrated that, short of a flat order by the board and CEO to do op risk control projects, selling such projects down the line was very much a marketing job.

Marketing is always based on product appeal and prices. Therefore, able costing and savings estimates are in reality an integral part of the bank’s longer-term operational risk control effort. But while flat orders from the top of the organization can enable the starting of an op risk control project from scratch, continuing dependence on flat orders destabilizes the organization.

Notes

16 Cost control is indivisible from operational risk management

16.1 Introduction

Chapter 15 has shown that though cost, including overhead, may not be viewed as a salient operational risk factor it does require senior management’s attention. Cost control is a persistent and important issue. One of the domains where run-away cost is a prognosticator of op risk is in the back office, where lie the origins of the classical operational risk types. Another case is that of inefficiency in managerial and professional activities, all the way down to clerical and secretarial functions.

This chapter brings to the reader’s attention three strategic issues underpinning runaway costs: The failure to appreciate the difference between the cost of being in business, and the cost of staying in business; the spoilage of a company’s assets because of excessive compensation not related to performance, including executive options; and merger for merger’s sake, which is the philosophy of the cancer cell.

All three issues have a great deal to do with inefficiency. As another example, one of the reasons why commercial paper and different forms of asset-backed financing have, to a significant extent, replaced classical bank loans is the inefficiency of the banking system. The total cost of intermediating a security over the life of an asset is:

- Under 50 basis points in capital market operations
- But over 200 basis points in banking intermediation.¹

Because there is no reason to believe that people working in the capital markets are that much more smart and hardworking than bankers, the only reasonable conclusion for this huge difference is that banks are poor at cost control. They are also constrained by labor regulations unfavorable to them. When in the early 1990s Bank of America closed down its operations in Equador, it had to pay its 49 employees 6 years of salary.

At first sight, this may seem as an issue outside the scope of this book. In reality it is part of it, because what Bank of America faced in Equador and elsewhere is legal risk that, in all likelihood, has not been appropriately studied – including the exit clauses – before entering that market. And legal risk is an operational risk. In most financial institutions, the conventional wisdom has been that the reduction of the bank’s cost structure is a one-time procedure.

- Dispensable managers are let go
- Superfluous branches are closed, and that is that.
That’s false. Cost control is a way of thinking, and therefore a process, not a one-time event. Therefore, well-managed companies are steadily examining their business policies and procedures to find ways to cut the roots of sprawling costs. The core issue is not so much that costs have to be reduced, but that cost control should be a virtuous cycle.

As a way of thinking, cost control helps banks maintain their profitability even when business is flat or intensely competitive. That is why it is most important to make virtually every cost, including labor, more variable than in the past. This is helped by the fact that technology is giving timely access to the knowledge and information institutions needed to reduce working capital throughout the economic system. But there are several misconceptions associated to cost management.

16.2 The cost of staying in business

Like any other company, a credit institution must serve its own survival; this means it must operate at a profit. Profit performs a function essential to the success of any industrial and post-industrial society, and profitability must be the criterion of responsible business decisions. Not only does the survival of a bank depend upon its economic performance, but also the overriding demand of society is for economic performance.

To keep its resources intact, the financial institution must be able to cover costs out of current business. This goes beyond the cost of doing business, because financial and industrial activity focuses in the future. Two top measures to be taken by management are to:

- Shrink the cost base and make operations more efficient, and
- Pay a great deal of attention to the cost of staying in business.

To appreciate the meaning of the second point, it is appropriate to recall that, classically, banks look at their budget as divided into two parts: the interest budget (roughly two-thirds of the total), and the non-interest budget. The latter should take care not only of expenses associated to ongoing operations, but also of expenses necessary for the longer-term survival of the enterprise.

- The cost of doing business practically includes all day-to-day operational costs.
- The cost of staying in business is money invested in research and development (R&D), and generally activities that guarantee a place in the market in the future.

Since banking has become an industry it is very important that it takes care of its R&D budget, and the projects to be planned, financed, and controlled – as well as their deliverables. This applies not only to the development of new products and services, but also to projects aimed to control credit risk, market risk, and operational risk. Risk management is part of the cost of staying in business.

The structure of a post-industrial economy is radically different from that of a trading economy. While a trading economy focuses on the past, with the difference
Cost control is indivisible from operational risk management

between past cost and current revenue a profit, an industrial economy focuses on the future and must cover out of its current revenue not only current cost of doing business and future cost of staying in business, but also:

- An indirect share of losses of unsuccessful enterprises, and
- A reasonable share of society’s non-economic burden, which, because of demographic and other reasons, increases over time.

This suggests that the modern enterprise owes some additional duties to its stakeholders, including the society of which it is a part. These duties, though often not represented in the average balance sheet, are necessary charges against current operations.

For instance, an indirect share of losses from unsuccessful enterprises shows itself through increase in government taxation, reduction in market potential, excessive requests of labor unions, or special governmental regulations. In fact, the dry holes, the competitive failures in a free enterprise system, are wastes that any individual enterprise might avoid, but a society of enterprises cannot avoid entirely. They even perform a necessary function: that of keeping the economy’s valves open.

- It is not by eliminating competition that the social waste of failure can be avoided.
- Competition and failure are the ways by which elements of risk in an advanced economy can be explored.

It should also be appreciated that a going enterprise bears, again out of its current activities, a share of social costs that do not pertain to its own economic process: schools, hospitals, universities, foundations, etc. This is a form of social responsibility that has become a ‘must’.

Then, we must not forget that out of its current revenues the enterprise must maximize its profits, reinvest some of these profits in its transformation process – in the form of capital expenditures – and pay dividends to its stockholders. Only if the enterprise can cover all these costs in an able manner,

- Will it preserve its own resources, and
- Will it contribute to the economic growth of its society.

In pre-industrial economies the product risks were mostly physical. Today, physical risks are always present, but the modern company is also subject to growing economic risks, from marketability of products to control of risks associated to after-sales responsibilities. In banking, an after-sales responsibility is what to do with accumulated ‘toxic waste’ from derivative instruments and non-performing loans.

At one end of the spectrum, product risk stems from unforeseeable shifts in demand. It may be a change in fashion, or an ingeniously improved product marketed by competitors. Product risk can be controlled, in an industrial economy, only when it operates under extreme scarcity conditions; when any product is eagerly bought at any price. This happened in the post-World War II years, but it is not the case with our economy.
Tools like *market research* and analysis help to decrease product risk by foreseeing the economic future of one’s products. Through R&D a firm may develop new and better products, and hold its share in an expanding market. To minimize product risk, management must answer, in an effective manner, the questions: *when*, *what*, and *how*.

- When, what, and how are crucial queries for an economy to expand and improve, but still more is required in a post-industrial economy.
- This ‘more’ is rigorous risk control because the New Economy prospers by taking major risks, and by managing change.

All societies change, but change in pre-industrial economies was mostly the effect of outside forces: wars, conquests, explorations. Quite different is the change to which the post-industrial economy is subject. This change is self-generated, built in the productive system, and it is part of the cost of staying in business – hence the emphasis on:

- Research and development, and
- Enterprise risk management.

Modern organizations (states, enterprises, societies, associations) are either expanding or contracting, increasing their economic resources or using them up. Therefore, expansion is the key need of the modern industrial economy.

Classical economists knew of only one way to increase economic production: the employment of existing resources for the activity they were best fitted for. The resources themselves were considered God-given and unchangeable. Marx and his followers understood that expansion is not only desirable but also necessary to the new industrial economy. Yet, they saw only one possibility of expansion: expansion into new territory through exporting the ‘proletarian revolution’. So, the misconception developed that expansion was impossible except at somebody’s expense.

Examined under the light of the situation as presented at the beginning of the twenty-first century, both doctrines are utterly wrong. What is basically new about the post-industrial system is its power to expand at nobody’s expense: the application of technology results in an actual transformation:

- Of old and fully utilized resources,
- Into bigger and more productive ones.

Modern technology has shown that the best way to increase productivity is by an improvement in the method and in the system, by which the same resources employed in the same activity or a new one are made capable of producing more and better products – the agent being the innovator. This is the cost of staying in business.

16.3 Operational risk control and the administrative budget

Section 16.2 brought to the reader’s attention that the cost of staying in business should not be confused with the cost of doing business. Both have to be covered out of the current non-interest budget, and operational risk is part of both of them:
Cost control is indivisible from operational risk management

- Research necessary to identify operational risk and develop the control framework is part of the cost of staying in business.
- By contrast, the steady exercise of day-to-day operational risk control is part of the classical administrative budget, hence of the cost of doing business.

Let me repeat this point. The development of new models, methods, and systems for operational risk identification and control must be financed by the R&D budget— which is also part of the non-interest budget, but quite distinct from money allocated to day-to-day administration. The steady exercise of op risk controls, however, is part of normal administrative chores.

The problem in this connection is that when normal administrative costs, often referred to as operating costs, get out of control, as so often happens, they leave precious little to be invested into the mission of staying in business. Only top-tier management appreciates the fine print behind this issue, and takes the measures necessary to keep normal administrative costs under control.

A different way of stating the need to keep a sharp watch on every dollar or pound spent in current administrative costs is that while in the banking industry cost control has become a major theme the effort surrounding it is often misdirected. Cost control attracts too much lip service and very little real action. Even cost-cutting that concentrates on headcount is overwhelmingly directed to rank and file, rather than taking a system-wide view.

This chase after headcount at the bottom of the organizational pyramid leads to several distortions, wild outsourcing being one of them. At the risk of being repetitive, here is the case of a British investment bank which outsourced its networks, including the local area network (LAN) in its trading room, in order to reduce the headcount. The system specialists who ran the LAN:

- Were hired by the insourcer
- Continued working on the bank’s premises, and
- Were billed by the insourcer to the bank at much higher price than their original wages.

While reducing the headcount is important, it is much less important than the factual and documented definition of what cost-restructuring is and is not, as well as what it can produce by way of accomplishments. The consciousness that costs matter is part of systems thinking.

The statement made in the last sentence is polyvalent. It includes cultural issues as well as technical questions such as: At what level of performance do managers and professionals release the best of their capabilities? Can the current IT structure support this level of performance or is it the bottleneck? More precisely:

- What is the higher level of performance from human resources and IT systems needed to be ahead of competition?
- What kind of incentives can help our bank reach the level that we target? (See also section 16.5 on executive options.)

Depending on the size and diversity of our bank’s operations, the demands posed upon the human capital vary—and the same should be true of incentives permitting
strategic and tactical goals set by the board and the chief executive officer to be reached or exceeded.

Big egos and ‘me-too’ approaches blur the strategic moves. They lead to actions that have nothing to do with rationality. For instance, it has been widely known for more than a decade that the banking industry needs to consolidate, but big egos have seen to it that consolidation has been often confused with costly mergers and acquisitions that are empty of deliverables, if not outright counterproductive (see section 16.4).

While management’s attention is distracted, and the operating budget is drained by issues that contribute little to the bottom line, other crucial issues get scant attention. An example I never tire of repeating is enterprise risk management, which is pivotal to sound corporate governance.

Running a company today is simpler and more complex at the same time, compared to the immediate post-World War II years. Communications and IT make the management task easier, helping to produce a higher level of performance than in older times if, and only if, they are properly designed and implemented.

At the same time, the process of company management has become more complex, driving the need for services and system solutions to address fast developing market requirements throughout the world.

- New technologies must be supported at high performance levels, washing away the constraints of legacy systems, and
- Senior management must be endowed with means of increasing insight and foresight, necessary for the control of a myriad of risks.

Risks are costs with the potential to be three orders of magnitude higher than savings from the reduction of rank and file headcount on which so many companies concentrate. At the same time, if we use advanced methods, models, and technology to cut the cost of risk, we cannot remain indifferent to other costs. Chapter 15 has already brought to the reader’s attention that all costs must be slashed.

In my experience I have often found the effort to reduce the intrinsic cost of credit risk, market risk, and operational risk wanting. This is partly due to the fact that only the best management companies look at risk as a major cost item. The others simply hope that divine providence will turn the risks they have taken their way. Real life does not work like that.

Sometimes miracles happen, but this is very rare indeed. For instance, on 19 December 2002 a judge in the United States reduced the $28 billion in compensation Phillip Morris was condemned to pay tobacco victims to $28 million. The difference in the cost of this particular legal risk is three orders of magnitude, but then the original $28 billion was just crazy. Some sort of 'miracle' had to happen.

The only way to keep costs under control is to watch after them very carefully. Much can be learned from the manufacturing industry on how to use technology in controlling costs. Take as an example the case of components manufacturing. Today, components comprise over 70% of the cost of a typical electronic subassembly. The cost associated with them can be reduced by using a component information system.
Making on-line datamining available to the entire enterprise, from the very start of the design process, and
Supporting through merits and demerits normalization and reuse of preferred components by design engineers.

Able technological solutions address a myriad of problems, from attacking productivity bottlenecks, to reducing process errors, and decreasing design cycle time. Also, since on-line processing provides an audit trail, it is easier to control the merging together of information from various runs which were previously standalone.

By comparison, batch handling, which is still practised by the majority of financial institutions, and other legacy IT tools and methods, provide no history or revision mechanism for individual runtimes and their integration into an enterprise management system. Yet, if we wish to cut cost and control risks, we must support managers, traders, loans officers, and everybody else with a real-time roadmap – as well as tools to help them quickly learn what is happening with transactions and process flows as they evolve.

From Chapter 5 the reader should be aware that real-time solutions, database mining, and interactive knowledge artefacts provide a mechanism to monitor and regulate the status of ongoing trades and other transactions, including operational risk control. This is achieved by making possible closer collaboration among geographically dispersed teams while continuing to improve efficiency and communication.

In conclusion, in terms of cost control and operational risk control, heightened accessibility over data and processes is especially important. Control action becomes so much more efficient if it is possible to investigate cause and effect, as suggested in Figure 16.1.

A basic principle in any business is that of being alert. When the entity’s dimensions are small, management (perhaps just one individual) can size up risks and opportunities by keeping their eyes wide open. This is not sufficient with big firms. Because many deals are worked on by business units, which reside in different places, interactive computational finance is a ‘must’. For this reason, its development is part of staying in business.

![Figure 16.1 Cause and effect before and after operational risk control](image-url)
16.4 Are mergers and disinvestments a good way to cut costs?

Mergers among credit institutions, for reasons of economies of scale, big egos, or any other, are a vast subject, and, with one exception, are not the theme of this book. The exception is mergers of a specific division belonging to different financial entities, which then becomes their insourcer. An example is the merger of mortgage divisions of three major German banks for cost cutting reasons. In early November 2001 Commerzbank, Deutsche Bank, and Dresdner Bank announced the merger of their mortgage banking operations, in a move which created Germany’s biggest property lender. Based on the merged operations of three major credit institutions, the assets of the new entity stood at more than $215 billion. The combined activity represented an estimated 25% of domestic market share. The move came as Germany’s big commercial banks stepped up cost cuts and shed jobs at a time of falling profits, and pressures for consolidation among Germany’s Hypotheken (mortgage) banks, which have been hit by:

- Shrinking margins, and
- Heavy loan losses after a frenzy of lending in eastern Germany in the early 1990s and beyond.

The jointly owned unit essentially serves as an insourcer of the mortgage banking operations of each of its three parent credit institutions. Though insourcing and outsourcing is not a theme of this book, a couple of words help to put this and similar mergers for reasons of economies of scale into perspective.

Outsourcing is a delegation of authority but not of responsibility. The responsibility rests with the outsourcer, even if by assuming the authority the insourcer also has its own share of responsibility. Beyond this, as John Hasson, director of information technology and treasury operations at Abbey National Bank, aptly says: ‘I am comfortable with outsourcing as much as I convince myself that what I outsource is a commodity. But I don’t like to see outsourcing becoming an accounting device.’ In fact, Abbey National looked at outsourcing its back office operations but did not like what it saw. ‘What you outsource is high volume,’ Hasson said. ‘Because we don’t have high volume in the investment banking business, it did not make sense to outsource that service.’ Mortgages however do have high volume, so from that viewpoint the action of the three German banks made sense.

In different terms outsourcing the mortgage portfolio of three major credit institutions satisfies the prerequisite of mass production – hence, the commodity argument – but what about other conditions? A problem that comes up immediately is joint management of the common subsidiary; another problem is that of unavoidable confidentiality issues.

There is always a difference between good intentions and obtained results. Expected returns and real returns may deviate substantially, as Figure 16.2 suggests. An example is COVISINT, the procurement subsidiary by General Motors, Ford, and Daimler–Chrysler launched in February 2000, which never really got off the ground.3

A similar statement is valid regarding the good initial intentions associated to disinvestments, and the results obtained a few years down the line. Disinvestment, like mergers, is an activity involving an inordinate amount of operational risk because,
Cost control is indivisible from operational risk management

most often, the functionality of different departments finding themselves at the borderline has to be cut down the middle. For different reasons, part of the cost associated to mergers and acquisitions is an increase in operational risk.

Is this higher operational risk cost compensated by extraordinary benefits? The best way to answer this query is through practical examples. In November 1997, the acquisition of BZW’s European equities and corporate financing business by Crédit Suisse First Boston (CSFB) from Barclays, seemed to be fulfilling the latter’s ambition to become Europe’s investment banking powerhouse. At least this was the plan.

In a transaction described by financial analysts as ‘brilliant’ for the buyer and awful for the vendor, CSFB paid £100 million ($155 million) for the BZW operations, which was 33% less than the division’s book value. On paper, the BZW purchase created a third home market for CSFB in the UK. It also gave it BZW’s businesses and clients access to the US market.

On Barclays’ side, the advantage of this deal was closing down the costs of BZW, its investment banking subsidiary. In February 1998 Barclays admitted that it had paid at least £688 million ($1.1 billion) to leave the big league of investment banking business. What remained from BZW has been downsized into a medium-size investment operation known as Barclays Capital.

Barclays Capital started by employing about 3500 staff, 800 of them in the United States. The new unit chose to specialize in challenging the logic that was driving the rapid consolidation of investment banking. It did not arrange new share issues, trade shares, or offer advice on mergers and acquisitions. Its operations centered in:

- Foreign-exchange trading, and
- Bonds denominated in sterling.

Originally, Barclays Capital also included some traditional banking businesses into which Barclays wanted to inject investment banking expertise, such as financing big
infrastructure projects and providing loans for less creditworthy companies. In a matter of a few years, however, Barclays Capital grew and expanded into new fields like investment advice in deals involving deleveraging and outsourcing.

What did the enlarged CSFB get for its money? It did not really become a major force in UK corporate broking, or in mergers and acquisitions – at least not in a way that it could truly compete with the three largest US investment banks: Goldman Sachs, Morgan Stanley Dean Witter and Merrill Lynch. These are the three big ones that dominate the:

- Global equity capital markets, and
- Investment banking services.

The acquisition of BZW by CSFB did not enable the latter to dethrone any of the big three and take its place. Instead, according to some accounts, over and above the price it paid for the acquisition of BZW operations in the UK and the US, Crédit Suisse First Boston spent $300 million to lure back a team of 40 bond traders headed to Barclays. The extra cost of personnel is one of the operational risks being assumed in acquisitions.

What about the profits? The good news is that in 2000, CSFB earned $358 million for underwriting $5.4 billion of technology IPOs. This represented the combined operations from the existing base and the acquisition. The bad news is that staffers in the CSFB technology group keep about 50% of net fees they generate. Essentially, it is they who profited from CSFB’s acquisition of BZW. The very bad news is that in 2001 and 2002, this market nearly disappeared.

Neither did the enlarged CSFB benefit from a stronger UK and US presence than European rivals, like (the then competitors) SBC Warburg Dillon Reed, UBS Phillips and Drew, ABN–Amro Rothschild, Deutsche Morgan Grenfell, and Dresdner Kleinwort Benson. Yet, CSFB could capitalize on the fact that BZW:

- Was adviser and broker to 150 UK companies, including 22 of the FTSE 100
- Was Number 2 underwriter of UK equity, and
- Ranked second in UK equity trading.

This is one more piece of evidence that few mergers and acquisitions reach the objective they have originally set themselves. This is not finger-pointing to a couple of investment banks but a general observation. A recent article in The Economist said that: ‘Investment banks are among the worst-managed institutions on the planet because they are built on a loose confederation of franchises and outsize egos. Once you start counting conflicts of interest within them, you soon run out of fingers.’ Management risk is inherent in such a situation.

Another blunder has been the $12 billion spent in year 2000 by Crédit Suisse First Boston to purchase rival Donaldson, Lufkin & Jenrette (DLJ) in the United States. By 2002, fewer than half of DLJ’s 2000 bankers remained at CSFB – and, apart from that, the business benefits have been minimal. By contrast, the $12 billion spent on DLJ depleted the reserves of Crédit Suisse and, combined with problems at Winterthur, left the bank in a difficult condition in 2002.
16.5 Why fat executive options work against shareholder value

In the aftermath of the various scandals surrounding overblown executive options, legal experts suggested that this has become a case study in the mismanagement of morality – an operational risk. According to some estimates, in 2002 alone corporate scandals, options being one of them, have cost investors a cool $200 billion. Among the hardest hit investors were the pension funds.

In his book *Take On The Street* Arthur Levitt, Jr says that when he became chairman of the Securities & Exchange Commission, in mid-1993, he found a controversy raging over whether companies should treat stock options as expense against earnings on their income statements. This would have been similar to the way they treat salaries, bonuses, and other forms of compensation.

- The Financial Accounting Standards Board (FASB) said they should expense options.
- But corporations insisted they should not, since no money actually flowed from the company’s treasury.

Correctly, the FASB argued that options involved real costs to shareholders. Therefore, in June 1993, it voted unanimously to seek opinion on a rule that would make companies put a fair value on their stock option grants, and record that number as an expense. The pressure against expensing options, Levitt suggests, came from everywhere: big companies and small start-ups, particularly those from Silicon Valley.

Both the big boys and the small fry were large campaign contributors to politicians. The core of the matter was that by saying non-expensed stock options were essential, companies were arguing, in effect, that transparent financial statements should be secondary to personal, political and short-term economic goals. This turned prudential cost management on its head.

- CEOs and chief financial officers were also fighting for accounting and reporting standards that let them understate expenses and exaggerate profits.
- The auditors went along. They did not rally to the cause of protecting investors, but supported the demands of their corporate clients all the way.

Non-expensing fat options which stole the equity of shareholders was not the only gimmick. Arthur Levitt suggests that over the years a succession of SEC chief accountants – Walter Schuetze, Mike Sutton, Lynn Turner – warned him that they were seeing a marked increase in manipulated corporate financial numbers.

A common creative accounting manipulation – an operational risk *par excellence* – was to push ordinary expenses into the category of one-time or non-recurring costs – like WorldCom did in a big way. Other companies added these expenses back into their earnings and called the result *pro forma*. This was against the rules of the generally accepted accounting principles (GAAP), which required that such expenses be properly subtracted from earnings.

In some quarters, people did not hesitate to talk of corporate crime. In late October 2003 Canada signalled a tough line against that sort of operational risk, charging four
former executives of bankrupt entertainment company Livent with defrauding
investors and creditors of about C$ 500 million (US$ 315 million).

The charges followed a four-year police investigation covering alleged accounting
irregularities between 1989 and 1998. This has been the first significant accounting
fraud charges brought by the Canadian authorities since the series of US corporate
scandals erupted in 2001. The Royal Canadian Mounted Police said the Livent’s two
founders, along with two other executives,

- Falsified the company’s financial statements, and
- Misrepresented its financial health to investors.

Livent once was the largest live theatre company in North America, with venues in
Toronto, Vancouver, New York, and Chicago. It collapsed in 1998 unleashing a
number of lawsuits. The company’s former chief executive and president have also
been indicted in the United States on charges of conspiracy and securities fraud in
connection with Livent’s collapse. Management risk, deceit, and absence of cost
consciousness morph in many ways:

- From the softer approach of stock options
- To the hard one of manipulation of financial statements – an outright fraud.

The pattern of taking money out of the shareholders’ pockets did not take long to
develop. Companies were playing with their earnings until they arrived at the best
possible number that could have a big market impact. Earnings press releases revealed
only the good news, and auditors whitewashed the corporate accounts in spite of the
trickery.

The numbers game became a policy. From 1997 through 2000, 700 companies
would find flaws in past financial statements and restate their earnings. By
comparison, only three companies restated in 1981. This is the depth of degradation
which business morals can reach, and fat executive options played a central role in
keeping the fraud off the radar screen.

When they were originally offered by start-up companies in order to attract some
of the best young graduates, options were intended to give a sense of ownership to
executives and professionals. This was a good strategy. Eventually, however, they
became overexploited for all types of incentives for ‘better performance’; then they
drifted to a level that had little or nothing to do with performance itself. Analysts at
Wall Street calculated that:

- In the general case, options take a cut of 10% of annual company profits.
- For technology companies this rises to between 20 and 25% – and it can go up to
 50%, as in the case of Intel.

In other terms, shareholders take all the risks but they gain only three-quarters of
the profits, or even less than that. This sort of heavy decreaming has become very
similar to the policy followed by hedge funds which take 20–30% of profits, while
their investors assume all the risks.

There is no denying that many companies, particularly technology outfits, have got
away with shareholder assets by using options as free money, which does not appear
on income statements. Siebel Systems, a software firm, provides an example. In 2001, Siebel had income of $254.6 million, or 56 cents per share. Counting all options in the share count, that shrank to 33 cents a share, about 40% lower.

- If Siebel had expensed options, then it would have reported a $467 million loss, or $1.02 a share,
- This and other examples from expensing options speak volumes of disappearing shareholder value, turning the income statement on its head.

Experts say that misleading accounting for stock options has concealed a tremendous transfer of wealth from shareholders and their companies to managers and professionals.\(^7\) One way to measure the cost of stock options is to assign a value to options at the time when they are granted. Another, simpler one used by government statisticians is to count the net proceeds of exercised stock options as wages paid by companies.

The latter method has the advantage of measuring actual cash going to managers and other employees. An executive who exercises 1000 stock options with a difference of $100 between the market price and the exercise price and then sells the shares walks away with $100,000 in cash. In many cases, the company opts to buy back those shares and thereby effectively pays out the $100,000 to the executive. According to this accounting model, the effective wealth transfer from options has been very significant and shareholders paid for it.

16.6 What it means to be in charge of re-engineering

All of the different forms of creative accounting are operational risks. They are no innovation of financial services but, rather, a misrepresentation of facts and figures. The massive and unwarranted granting of executive options falls into this class. The same is true, in terms of shareholders’ misinformation, of more than half the reasons given for mergers and acquisitions. Statistics show that:

- Two-thirds of mergers have been failures, and
- Less than one out of five mergers and major acquisitions could be regarded as a success.

If mergers and acquisitions are not the wonderdrug for high costs and other business ills, then what might be the solution? The answer is being an innovative but also very low cost producer of financial services. This is the subject of the present section.

In the first decade of the twenty-first century no bank can place itself beyond the bounds of a free market’s checks and balances. There is no financial market that is a certain company’s personal fiefdom, as the reader will recall from the discussion so far. Highly competitive environments are known to reward the low cost producers and distributors of services, equipped with:

- A top performance product, and
- A well-thought-out strategic plan.
Only those companies satisfying these criteria can survive, because survival in a highly competitive market means steady innovation with products offered at an affordable price. As we saw in section 16.2, innovation constitutes the cost of staying in business and is the basis of an entity’s present and future profitability.

Innovation and efficiency correlate. One of the sources of investment profits on which Henry Kravis and George Roberts counted was increased efficiency. Their rule has been that every big company is hidebound by excess overhead, bureaucracy, and pay not based on merits. At most of the companies KKR had acquired, headquarters staffs were too large. ‘I called them people who report to people,’ Kravis often remarked. ‘Companies build up layers and layers of fat.’

Therefore, the virtues of cost-cutting became almost a theological point for Henry Kravis. It has also been a strategy for acquisitions that can be expressed in one simple sentence: ‘Pursue big-name clients but keep your own overhead small.’ Safeway is a case in point, and a good example of a company’s inbred inefficiency, which acts like a cancer.

As Kravis and Roberts dug into the Safeway finances, they found confidential figures that were the grocery chain’s secret shame, and the delight of their analysts. As it happens with so many commercial banks and investment banks, while overall Safeway was profitable, huge chunks of its territory were operating deep in the red. The supermarket chain was pursuing a strategy common to many big companies:

- Quietly draining cash from its strong business, and
- Subsidising other inefficient operations that were never dropped.

Unwillingness to chop off dead wood is a management weakness, therefore an operational risk. It is also a miscalculation based on the hope that some miraculous turnaround will bring short-term gains, even if this happens at the expense of long-term survival. The problem with the status quo, which is galvanising the base and does away with tough decisions, is that senior management misguides itself into thinking it can have its pie and eat it too.

Few in management have heard or, if they have, really appreciated, the wisdom of H.J. Stern, who in his retirement from the helm advised the investment banker he called in-house to sell his firm: ‘A company isn’t like an oil well where all you have to do is hold a pan out and collect the oil. It’s like a violin. And I’m not sure my sons have what it takes to play the violin.’

Neither are there many boards who know how to play the violin. A testament to this is provided by the straits in which the automobile industry found itself in the late 1980s/early 1990s, a process which continues into the twenty-first century. Coping with a major downturn has been hard for Detroit’s big car makers. GM, Ford, and Chrysler plunged into losses time and again, in recent years, even as sales boomed. This profitless prosperity:

- Drained their treasury, and
- Drew attention to their liabilities, such as their underfunded pension and other worker benefits plans.

On account of these woes, the independent rating agencies downgraded the debt of Ford and General Motors almost to junk, unheard of for big companies in a mature
industry. This made it costlier for them to raise capital, creating a credit risk which morphed into operational risk, and the other way around. Behind each case has been management’s inability to come up from under.

Experts suggest that such persistent depression hitting big, mature companies is the outward manifestation of management risk. Some companies, like General Electric, have escaped by re-engineering themselves. Others persisted in the drift. The results coming out of huge bureaucracies contrast to those achieved by successful entrepreneurs. Many people erroneously think that all turnaround specialists have really done is to take over companies, but they forget that none of these deals became successful:

- By warming executive armchairs
- Or by exercising some magic.

Most of the companies taken over by experts in business re-engineering had major problems, and all required innovative financing structures as well as an efficiency principle well-embedded at top management level. Each turnaround has taken a lot of time, thought, and effort to bring about.

The financial track record of Kravis and Roberts, for example, did not just happen. It took a lot of work, worry, thought, planning – and luck. In many cases the old management said that it was undermined in its efforts. But careful analysis documents that this is far from the truth. The old management undermined itself by:

- Not staying up on market developments
- Not reading reports critical of the way things were going, and
- Not looking after efficiency at every line of operation, as well as at headquarters.

It takes very intelligent and sensitive people to run a modern company. And it is wrong to believe that the outside world does not know the difference regarding the fairest and best way to handle problems. ‘A person without problems is decadent,’ one of my professors taught his students at UCLA. Therefore, management should not complain that it has problems. Instead, it should be keen to:

- Set effective business strategies
- Assure they are properly executed
- Invite contrary opinion
- Re-engineer and restructure
- Analyze and monitor financial reports, and
- Pride itself on a rigorous financial discipline.

In conclusion, organizations unable to reinvent themselves, and steadily improve their efficiency, are self-destructive. As the discrepancy between their profit-making and money-losing activities mounts, raiders move in chop the management, take over the firm and turn it around – or cut it to pieces and sell it, when profits from the pieces are greater than from the company kept as one unit.
16.7 Establishing and sustaining a transnational advantage

In a globalized economy, being an innovator and low cost producer of products and services can make the difference between success and failure. But while this is vital, it is not enough. To sustain a competitive advantage in a transnational industry, such as banking, computers, communications, and software, a firm must sell to all significant country markets. Particularly important are markets that contain advanced and demanding buyers because they stimulate further innovative thinking:

- Mastering sophisticated markets helps management understand the most important customer needs.
- In turn, these create pressures that push towards rapid process in innovative and, up to a point, profitable services.

This is a matter of steady transition. The principle is always that transition comes with costs, but failure to make the transition results in a much higher cost. An enterprise can go out of business and die if it cannot make changes, and the same is true of any organization, including entities of national interest (like social security and the health service), and empires.

The rapid evolution in demand is a basic reason why nations with sophisticated clients are those where leading international competitors are based, making it all the more challenging to beat them at their home base. In banking, for example, access to the world's best markets is necessary to sustain competitive advantages.

In finance, as well as in manufacturing and merchandising, the most rewarding form of loyalty to domestic suppliers is to confront them in no uncertain terms with the need for innovation and cost control. Also, with a stringent requirement for matching their foreign competitors in high quality of deliverables in order to retain the business relationship.

- No source of supply should be guaranteed the business.
- Unless the business partner is taking aggressive action to innovate, upgrade quality, and cut costs, supporting domestic suppliers is nobody's ultimate gain.

A similar statement is valid in terms of operational risk control. Any company aspiring to competitive advantage must be aware of all important R&D work going on in the world that is related to its business. This is as true of banking as it is of any firm operating in a competitive industry and seeking market advantages.

Whether in banking or in the peak technology sectors of manufacturing, management must meet head-on the best rivals in the market, in order to sustain and upgrade the company's edge. This is the concept of leadership and, as such, it contrasts to the conditions found in many firms where managers:

- Misperceive the true basis of competitive advantage, and
- Become preoccupied with their own turf rather than with their company's profits and its survival.

Time and again, an industry's leaders are those who have a broad view of competition in which change and innovation is integral to competitive success. They
Cost control is indivisible from operational risk management

work hard to improve that state of mind and keep ahead of the curve in their business environment. They also encourage internal competition, sometimes through painful new policies.

Basically, this is what globalization is all about. Those who revolt against globalization do so because they are against change, when change eats into their old way of doing things – the status quo. This is true whether the status quo represents fat and unsustainable social benefits; big, inflationary government spending; early retirement with comfortable revenue; or greater effort and more imagination in the work one is doing.

Mid-November 2002, The Economist ran a survey which showed that in France a mere 37% of the 55–64 age group are in the labor market. This compares very poorly with 70% in Switzerland, and is part of the exorbitant French social costs. No wonder that for every €100 ($100) every French employee takes home, a French employer still has to shell out €288, compared to half that amount in other countries. In Britain the pay out corresponds to €166.

Huge handouts and the preservation of the status quo are not the stuff out of which competitive strategies are made. Competitive strategies require change and innovation brought about by leaders who think in transnational terms. Competitive strategies also call for long-range plans able to enhance and extend the current position by:

- Engaging the competitors in their own ground
- Inspiring their organizations to meet new challenges, and
- Serving current market needs cost-effectively, while keeping on progressing.

Whether in finance or in any other sector of the economy industry leaders always find ways of overcoming constraints and demolish roadblocks that limit innovation or present obstacles to change. They facilitate the transfer of skills and pay particular attention to the need to grow their human and financial resources while watching the costs. Globalization has not done away with this need. If anything, it brought it into focus.

This is true of all industries, independently of how wealthy an entrepreneur or his or her company may be. The movie industry is global. Steven Spielberg, the film director and producer, according to an article in BusinessWeek, gets deeply involved with money matters – especially budgets. That’s rare in an industry where $100 million budgets are becoming commonplace and talented directors have severely damaged their careers with profligate spending.

Family training seems to have played a major role. His father was vice president/manufacturing of Univac, the computer company, and taught his son the value of money. As a boy, Spielberg learned that he had to watch the bottom line. To this day, Steven Spielberg is always on the lookout for ways to hold costs down.

No cost savings seems to be too small for Spielberg or too big. Just weeks before shooting one of his movies was to begin, he called up demanding that the producer cut $20 million out of the already trimmed-down $56 million budget. ‘He told me, “Honey, that film isn’t getting made until it has a ‘3’ in front of its budget, so get cutting”,’ said Debbie Allen, the producer. I would like to see board members tell exactly the same thing to the CEO and the executive vice presidents. No cost savings should be too small or too big in a financial institution.
16.8 Capitalizing on the evolving role of financial instruments

Fundamentally, the business of banking is that of buying and selling time. This is precisely what credit institutions do by taking deposits and giving loans; also, through trading. However, the instruments they are using are changing over time.

‘Clothes and automobiles change every year,’ said Paul M. Mazur of Lehman Brothers, ‘but because the currency remains the same in appearance, though its value steadily declines, most people believe that finance does not change. Actually, debt financing changes like everything else. We have to find new models in financing, just as in clothes and automobiles, if we want to stay on top. We must remain inventive architects of the money business.’

Paul Mazur’s statement was made four decades ago, but his words were prophetic. Figure 16.3 shows in a nutshell how and why during the past 40 years industrial development has accelerated, particularly in the financial sector. This evolutionary process is propelled by the cost of staying in business, whose vital importance to company survival has been underlined in section 16.2.

In principle, the more wealthy and more sophisticated are the customers the greater are their requirements for financial innovation and quality of deliverables. A thorough study I did with one of the leading financial institutions in terms of asset management led to the 1‰ rule. Out of a total of, say, 1,000,000 customers,

- The top segment of 1000 customers, the 1‰, posed very sophisticated requirements.
- The next 1% of customers, or 10,000, presented significant demands.
- The following 5% of customers, the next 50,000, had to be satisfied with a great deal of effort.

Figure 16.3 Background reasons why industrial development has accelerated – particularly in finance
Both innovation and quality of deliverables were at the top of the list of requirements of these three populations, but at different thresholds. Demands posed by the next 10% also gave rise to a good deal of effort, while the balance of 84% of customers was handled through already established products and procedures in a satisfactory way.

Profits for the financial institution followed the inverse line of these percentages. The largest profile – at the level of 20% of total profits – came from the top 1% of the institution’s clients. The top 10% of clients roughly accounted for 60% of profits, and the 20% for nearly 85%. This follows closely enough Pareto’s law, creating the power curve in Figure 16.4.

The top percentage of customers was largely composed of big international companies, institutional investors, and high net worth individuals. All three classes posed significant demands in customer handling, financial analysis, new instruments, and (in the majority) real-time reporting. A particular demand has been the level of handholding, which is not unreasonable.

Low frequency but high impact (LF/HI, see Chapter 8) operational risk lies in this area of the power curve. By contrast, the way to bet is that the balance of the customer population will more or less feature high frequency, low impact operational risk – though there may always be exceptions. There are several reasons for this statement and they converge towards two groups:
■ The unknowns, which are always embedded in new instruments, and
■ Risk inherent in high stakes, which may be credit, market, and operational exposures.

Bankers and investors careless enough to forget about the risks they are taking get obliterated. Without first class risk management companies go bust because the financial world is one of instability, not of equilibrium. To cope with this fact we have to change our culture, upgrade our tools and methods, and become much more alert to our risks. The drama in this connection is that, while in their heads people suspect change is inevitable, in their hearts they want precious little to change – and companies are made up of people.

Notes

4 The Economist, 16 November 2002.
5 CNN, Friday 18 November 2002.
6 Business Week, 30 September 2002.
7 Business Week, 4 November 2002.
8 The Economist, 16 November 2002.
Index

Abbey National Bank, 3, 338
ABN-Amro, 4, 128, 163, 198, 199
Accruals method, 120
ACE, 77
Actuarial calculation, 216, 218
Adelphia Communications, 87
Advanced measurement approaches (AMA), 31, 41, 126, 129, 130, 133, 134, 150, 151, 154, 161, 170
Adverse development cover (ADC), 244
Agents, 13, 99
AIB/Allfirst, 214
AKAI Holdings, 88
Allegheny Electric, 74
Allianz, 245, 246, 267, 283, 290
Allied Irish Banks, 316
Alternative risk transfer, 231, 240, 241, 294
A.M. Best, 90, 120, 246, 257, 281, 290, 299
AMB Generali, 283
American Express, 291
American International Group (AIG), 290, 303
American National Association of Insurance Commissioners, 221
American Reinsurance, 283
Analytical studies, 277
Andersen risk, 168
Arthur Andersen, 54, 223, 262
Asbestos and environmental losses, 281
Asbestos liabilities, 280
Asbestos litigation, 274, 275, 280
Asea Brown Boveri (ABB), 280, 281
Asset allocation, 222
Asset leverage, 222
Asset securitization, 29
Assets and liabilities, 17, 252
Association for Payment Clearing Services (APACS), 61
Association of British Insurers (ABI), 278
Atlantic Leasing, 16, 17
Atlas Copco, 282
Auditing IT, 11
Austin, Annette, 4, 163
Australian Insurance and Investment Commission, 247
Australian Prudential Regulation Authority, 223
Austrian National Bank, 121
Availability, 107
AXA, 267, 290
Baird, Ronnie, 17
Ball, George, 57
Bank engineering, 173
Bank of America, 63, 75, 243, 284, 318, 319, 331
Bank of England, 9, 67, 70, 291
Bank of Ireland, 131
Bankers Trust, 96, 173, 322, 323
Barclays Bank, 22, 44, 98, 166, 339, 340
Barings, 16, 169, 214, 235
Barnevik, Percy, 287
Basel I, 118
Basel II, 9, 118, 131, 150
Basel Committee on Banking Supervision, 3, 7, 11, 27, 28, 30, 31, 37, 41, 45, 47, 69, 118, 125, 126, 129, 135, 141, 143, 146, 148, 150, 152, 156, 159, 163, 168, 174, 184, 230, 231, 241, 251, 309
Basic indicator approach, 129, 144, 145
Basis risk, 238
Bayesian probabilities, 175
BCCI, 214
Belnick, Mark, 85, 86
Berkshire, 215, 277, 319, 320
Best capital adequacy ratio (BCAR), 221
Bethlehem Steel, 320
Birchler, Urs, 202
Bloomberg professional, 285
BNP-Paribas, 128, 198, 200
Bonneville Power Administration, 72
British Bankers Association, 18, 34, 36, 143, 159
British & Commonwealth (B&C), 16
Brookings Institution, 66
Brown, Richard H., 79, 81
Buffett, Warren, 249, 277, 319
Bureau of Labor Statistics, 75
Business continuity, 102, 107
Business disruption, 13, 290, 291

CalPers, 66
Canadian Imperial Bank of Commerce, 128, 198
Cantor Fitzgerald, 292
Capital asset pricing models (CAPM), 232
Cash flow at risk, 76
Catastrophe bonds, 219, 239, 301
Catastrophe swaps, 239
CEO malfeasance, 3
Chase Manhattan, 182
Chicago Board of Trade (CBOT), 239, 303
Chi-square testing, 182
Christmas, Peter, 264, 268, 269, 273, 299, 318
Chrysler, 314, 315
Chubb, 282
Cisco, 56
CIT, 82, 84, 85
Citigroup, 55, 63, 127, 128, 243, 281, 284, 285
Class actions, 51
Classification of op risks, 34
Classification system, 37, 175
Cochrane, Steve, 75
Code of Hammurabi, 52, 184
Collaborative level agreement, 112
Collateralized mortgage obligations (CMOs), 77
Combustion engineering, 280
Comité Européenne des Assurances (CEA), 229
Compliance audit, 47
Computer aided design (CAD), 172, 223
Confidence intervals, 38, 39
Conspiracy, 52
Consumer’s risk, 173
Contingency plans, 18
Contingent capital, 239, 303

Continuous linked settlement, 111
Contract, 274
Contractual risk, 55
Core risks, 7, 8
Cornell University, 235
Corporate memory facility (CMF), 96, 157
Corzine, Jon, 308
Cost control, 316, 332
Cost of debt, 232
Cost of doing business, 332, 333
Cost of equity, 232
Cost of insurance, 232
Cost of staying in business, 332, 334
Cost restructuring, 319
COVISINT, 338
Creative accounting, 17, 18, 343
Creative marketing, 18
Crédit Agricole, 75
Credit derivatives, 29, 281
Credit risk, 4, 49, 94
Crédit Suisse, 3, 122, 287, 288
Crédit Suisse First Boston (CSFB), 87, 235, 281, 316, 339
Creditsights, 66
Crossborder recognition, 229
Crown Cork & Seal, 280
Customer due diligence (CDD), 309

Daiwa Bank, 169, 214
Data collection, 27
Data filtering, 157
Datamining, 22
Davies, Brandon, 22, 166
Davies, Howard, 17
Davis, Gray, 78
Decept, 51
Defamation, 52
Delphi method, 40, 136, 137
Deregulation, 49
Derivative suits, 56
Deutsche Bank, 39, 63, 75, 128, 134, 243, 316
Dexia, 77
DiNardo, George, 322
Disaster containment, 24
Disaster recovery, 25
Documentation risk, 54
Downsizing, 130
Dresdner Bank, 246
Dresdner Kleinwort Wasserstein (DKW), 246, 316
Drucker, Peter, 3
Duke Power, 78
Dundridge, Christine, 268
Dynergy, 78

Ebner, Martin, 287
Economic capital, 120, 122, 133, 134
Economic risk, 209
Einstein, Albert, 150
Electronic banking, 93
Electronic Data Systems (EDS), 78–81
Enron, 54, 55, 74, 78, 87, 254, 255, 275, 284
Enterprise architecture, 99
Environmental liability, 51
Equitable Life, 17
Ericsson, 71
Erste Bank, The, 138, 139
Estimated maximum loss, 291
European Central Bank (ECB), 110, 174, 265
European Common Market, 179
European Union, 193, 229
Event risk, 5, 70, 210
Exchange rate mechanism (ERM), 179
Executive options, 341
Expected losses, 161
Experimental design, 14, 171, 175
Expert systems, 101
Extreme events, 136, 155
Extreme value theory, 195, 196
Exxon Valdez, 20

Fair value accounting, 249
Federal Deposit Insurance Corporation (FDIC), 113, 308
Federal Energy Regulatory Commission, 74, 113
Fidelity Investment, 82
Fiduciary risk, 22, 23
Fimalac, 253
Financial Accounting Standards Board (FASB), 70, 341
Financial Services Authority (FSA), 17, 24, 25, 187, 249, 250
Finite risk products, 241
Firemen’s Fund Insurance, 283

First Capital Holdings, 223
First Executive, 223
Fitch Ratings, 253, 307
Ford, Henry, 33
Fraud, 5, 21
internal, 21
Fuzzy engineering, 37, 40, 175, 185

G-7, 277
G-10, 222
General Electric, 67, 180–2, 345
General Electric Capital, 181, 182
General Motors, 79, 204
Generally accepted accounting principles (GAAP), 341
Genetic algorithms, 175, 196, 197
German Federal Banking Supervisory Board, 298
Global Crossing, 87
Globalization, 9, 49, 303, 347
Goldman Sachs, 29
Gramm–Leach–Bliley Act, 55
Griep, Clifford, 68
Gross income, 145, 146, 148
Grove, Andrew, 67, 277
Gurion, Ben, 58

Halliburton, 283
Hasson, John, 3, 338
Heisenberg, Werner, 178
Hellström, Kurt, 71
Hermann, Werner, 123
Hess, Thomas Dr, 204, 209, 215, 252
High frequency/low impact (HF/LI), 138, 142, 163, 167, 168, 170, 201, 212
HIH Insurance, 223
Holding period of return, 121
HSBC, 88
Hughes Aircraft, 272
HUK-Coburg, 245
Hurricane derivatives, 210

IBM, 313
Identification code, 33
ImClone Systems, 70, 87
Independent Insurance Agents of America, 68, 278
Index securitization, 239
Information technology (IT), 4, 90, 103, 105
Initial public offerings (IPOs), 87
Insider trading, 70
Insourcing, 79, 80, 111–13
Institute of Certified Public Accountants, 68
Insurability, 213, 214, 276
Insurance-linked securities (ILS), 237, 238
Insurer of last resort, 210
Intel, 67
Interactive computational finance, 98
Interactive credit rating, 254
Internal audit, 45, 46
Internal control, 28, 44, 45, 160, 191, 200, 201
Internal measurement approach (IMA), 43, 129, 150, 151
Internal ratings-based (IRB) method, 118, 131, 202, 264
advanced, 138, 161
foundation, 128
International Accounting Standards (IAS), 219
International Accounting Standards Board (IASB), 219
International Monetary Fund (IMF), 58, 59, 235, 294
International Organization of Securities
Commissions (ISOCO), 44
Internet traffic, 108, 109
Investment risk, 94
IT restructuring, 323

Jean Monnet, 193, 194
JP MorganChase, 55, 63, 65, 75, 76, 128, 182, 183, 198, 234, 235, 243, 284

KKR, 344
Kmart, 70, 71, 87
Know your customer, 309
Knowledge engineering, 22, 33
Kodak, 40
Korea Life Insurance, 247
Kozlowski, Dennis, 82, 85
Kravis, Henry, 344, 345

Lawrence, David, 127
Lay, Kenneth, 85

Lazard Brothers, 65
Legal risk, 20, 30, 49, 53, 54, 125
Lehman Brothers, 348
Level of confidence, 122, 123, 173
Levitt, Arthur Jr, 341
Liability insurance, 235
Liability risk, 276
Life securitization, 239
Lloyd's of London, 214, 215, 235, 264, 266, 303, 304, 305
Local area networks, 335
Los Angeles Water District, 75
Loss distribution approach, 130, 150, 152, 154, 159
Low frequency/high impact (LF/HI), 138, 142, 155, 163, 167, 168, 170, 174, 175, 201, 212

MacArthur, Douglas, 21
Macdougall, Ian, 20
McGraw-Hill, 253
McNerney, James W., 177
Macola, 67
Management audit, 47
Management information systems (MIS), 121
Management intent, 10, 120, 248
Management risk, 3, 5, 54, 63, 70, 79, 85, 269
Manhattan Project, 173
Marine Protection & Indemnity (P&I)
Clubs, 266, 267
Market discipline, 9, 12, 118, 184
Market risk, 4, 49, 94
Market risk amendment, 173
Marking to market, 120
Marsh & McLellan, 76
Materiality, 11
Mathematical provisions, 220
Mayer, Martin, 66
Mazur, Paul M., 348
Mean time between failure (MTBF), 271
Mean time to repair (MTTR), 272
Mega-risk, 277
Mellon Bank, 96, 322
Merrill Lynch, 53, 78, 83
Microsoft, 49
Model accuracy, 175
Model risk, 160
Monarch Life, 223
Montagu, Charles, 324
Monte Carlo simulation, 135, 138, 203, 263, 264
Moody’s Investors Service, 63, 78, 160, 253, 258, 281
Moral hazard, 235
Morgan Stanley, 292
Morgenthau, Robert, 85
Mortgage-backed financing (MBF), 298
Motion study, 320
Muhlemann, Lukas, 287
Munich Re, 247, 261, 262
Mutual Benefit Life, 223

National Association of Securities Dealers, 87
National Westminster Bank, 176
Nationally recognized statistical-rating organization (NRSEO), 253, 254
Natural catastrophes, 295
NatWest Markets, 24, 176
Negligence, 52
NERA, 76
Netting by novation, 110
New York Stock Exchange, 202
New York Times, 234
Newton, Isaac, 324, 325
Nikko Securities, 172
9/11, 215, 294
Non-core risks, 7, 8
Non-linearities, 175
Northwest Airlines, 108
Norwich Union, 235, 267

Office of the Controller of the Currency (OCC), 60, 113
Office of Thrift Supervision (OTS), 113
Operating characteristics (OC) curve, 173, 175, 191
Operational audit, 47
Operational risk capital charge, 146, 148
Operational risk indicators, 146
Operational risk profile, 170
Orange County, 77
ORX Consortium, 44, 128, 130, 152, 198, 199
Outsourcing, 24, 79, 80, 103, 111–13, 176

Pacific Gas & Electric (PGE), 74, 76, 77
Paciolo, Luca, 123
Palo Alto Management, 158
Parallel code system, 32, 34, 35
Pareto diagram, 182
Pareto’s law, 349
Parkinson’s law, 325
Patton, George, 13
Pension funds, 66
Perrot, Ross, 79
Phillip Morris, 336
Pillar I, 12, 118
Pillar II, 12, 118
Pillar III, 12, 118
PNC Financial Services, 55
Position risk, 94
Post-mortem evaluation, 179
Pricing of risk, 213
Probable maximum loss, 291
Procter & Gamble, 79
Producer’s risk, 173
Profit and loss statement, 121
Prudential Securities, 56, 57, 285

Qualitative analysis, 37
Qualitative drivers, 39
Quality control charts, 175
Quantitative analysis, 37
Quantitative impact studies (QIS), 4

Radar charts, 22, 23
Rating agencies, 53, 54, 230
Rating systems, 137
Ratio delay study, 321
Realspace, 94
Real-time, 94
Regulatory capital, 120, 122, 133
Reif, Franz, 138
Reinsurance, 219, 226, 227, 229
Reinsurers recognition, 229
Reliability, 105–7, 271
Reputational risk, 11, 16, 30
Return on equity (ROE), 134, 223
Return on investment (ROI), 322, 326
Risk adjusted return on capital (RAROC), 96, 174
Risk assessment, 15
Risk control, 16
Risk indicators, 30
<table>
<thead>
<tr>
<th>Index</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk insurance and reinsurance, 290</td>
<td>Statistical quality control (SQC), 177–80, 195</td>
</tr>
<tr>
<td>Risk management, 61, 62</td>
<td>Stern, H.J., 344</td>
</tr>
<tr>
<td>Risk migration, 168</td>
<td>Storebrand, 81</td>
</tr>
<tr>
<td>Risk mitigation, 130, 162</td>
<td>Stress tests, 13, 152, 155</td>
</tr>
<tr>
<td>Roberts, George, 344</td>
<td>Sumitomo, 169</td>
</tr>
<tr>
<td>Rocket science, 324</td>
<td>Sunset clauses, 143, 144</td>
</tr>
<tr>
<td>Rohatyn, Felix G., 65</td>
<td>Superior Court of California, 56</td>
</tr>
<tr>
<td>Royal Canadian Mounted Police, 342</td>
<td>Swiss Bankers Association (SBA), 308</td>
</tr>
<tr>
<td>Royal & Sun, 246, 267, 282</td>
<td>Swiss National Bank, 123, 202</td>
</tr>
<tr>
<td>Safeway, 20, 344</td>
<td>Swiss Re, 204, 209, 232, 235, 237, 252, 256, 257, 290</td>
</tr>
<tr>
<td>Sainsbury, 20</td>
<td>Swissair, 287, 289</td>
</tr>
<tr>
<td>Sanchez-Crespo, José, 90, 120, 221</td>
<td>Symantec, 67</td>
</tr>
<tr>
<td>Sandia Corporation, 272</td>
<td>System reliability, 90</td>
</tr>
<tr>
<td>Sanford Bernstein, 80</td>
<td>Taxonomical classification, 34, 35</td>
</tr>
<tr>
<td>Scenario analysis, 152</td>
<td>Taylor, Frederick Winslow, 317, 320</td>
</tr>
<tr>
<td>Schwab Capital Markets, 308</td>
<td>Technical risk, 209, 210, 212, 216, 226, 252, 291, 301</td>
</tr>
<tr>
<td>Scoreboard, 130, 154, 170, 177, 184, 187–9</td>
<td>Technology risk, 90, 91, 94, 269, 306</td>
</tr>
<tr>
<td>Sealed Air, 278, 279, 282</td>
<td>Terrorist acts, 296, 298</td>
</tr>
<tr>
<td>Securities & Exchange Commission (SEC), 80, 86, 254</td>
<td>Tesco, 20</td>
</tr>
<tr>
<td>Securitization, 230, 233</td>
<td>3M, 177</td>
</tr>
<tr>
<td>Semitech Group, 87, 88</td>
<td>TIAA/CREF, 76, 202, 203, 319, 320</td>
</tr>
<tr>
<td>Sensitivity analysis, 260</td>
<td>Tier 1 (T1), 119</td>
</tr>
<tr>
<td>Service level agreements, 111, 112</td>
<td>Tier 2 (T2), 119</td>
</tr>
<tr>
<td>Settlement netting, 110</td>
<td>Time horizon, 217</td>
</tr>
<tr>
<td>Settlement risk, 94</td>
<td>Ting, James, 88</td>
</tr>
<tr>
<td>Showa Shell, 169</td>
<td>Tort, 51, 54, 55, 274, 275, 278</td>
</tr>
<tr>
<td>Siebel Systems, 343</td>
<td>Tort litigation, 274, 275</td>
</tr>
<tr>
<td>Simulation, 152</td>
<td>Tort reform, 276, 277</td>
</tr>
<tr>
<td>Singer Sewing Machines, 87</td>
<td>Tyco International, 82, 84</td>
</tr>
<tr>
<td>Six Sigma, 18, 164, 177, 180, 182, 183</td>
<td>Unearned premium provisions, 226</td>
</tr>
<tr>
<td>Skilling, Jeffrey, 74</td>
<td>Unexpected losses, 161</td>
</tr>
<tr>
<td>Sloan, Alfred, 204</td>
<td>Unexpected risks, 119</td>
</tr>
<tr>
<td>Software Business Technologies (SBT), 67</td>
<td>Union Bank of Switzerland (UBS), 60, 61, 172, 288</td>
</tr>
<tr>
<td>Solvency, 255–7</td>
<td>United Airlines, 211</td>
</tr>
<tr>
<td>Southern California Edison, 74–7</td>
<td>United States Automobile Association, 301</td>
</tr>
<tr>
<td>Sovereign risk, 62</td>
<td>Univac, 347</td>
</tr>
<tr>
<td>Special purpose vehicles (SPV), 55, 240</td>
<td>University of California (UCLA), 71, 174, 345</td>
</tr>
<tr>
<td>Spielberg, Stephen, 347</td>
<td>US Chamber of Commerce, 275</td>
</tr>
<tr>
<td>Spitzer, Eliot, 87</td>
<td>US Department of Justice, 49</td>
</tr>
<tr>
<td>Standard cost system, 321</td>
<td></td>
</tr>
<tr>
<td>Standard & Poor's, 68, 69, 73, 74, 215, 258, 281</td>
<td></td>
</tr>
<tr>
<td>State of California, 72</td>
<td></td>
</tr>
<tr>
<td>Statement of Financial Accounting Standards (SFAS), 120, 133, 248</td>
<td></td>
</tr>
<tr>
<td>Term</td>
<td>Page Numbers</td>
</tr>
<tr>
<td>--</td>
<td>--------------</td>
</tr>
<tr>
<td>Value at risk (VAR)</td>
<td>5, 76, 121, 165, 174, 199</td>
</tr>
<tr>
<td>Veritas</td>
<td>266</td>
</tr>
<tr>
<td>Vicarious responsibility</td>
<td>52, 53</td>
</tr>
<tr>
<td>Virtual balance sheet</td>
<td>121, 122</td>
</tr>
<tr>
<td>Virtual P&L</td>
<td>121, 122</td>
</tr>
<tr>
<td>Visibilization</td>
<td>92, 101</td>
</tr>
<tr>
<td>Visistraction</td>
<td>92, 101</td>
</tr>
<tr>
<td>Visualization</td>
<td>92, 101</td>
</tr>
<tr>
<td>Vitro Laboratories</td>
<td>272</td>
</tr>
<tr>
<td>von Neumann, John</td>
<td>198</td>
</tr>
<tr>
<td>Welsh, Jack</td>
<td>182</td>
</tr>
<tr>
<td>Wilde, Lisa</td>
<td>25</td>
</tr>
<tr>
<td>Williams de Broe</td>
<td>20</td>
</tr>
<tr>
<td>Williamson, J.M.</td>
<td>61</td>
</tr>
<tr>
<td>Winterthur Insurance</td>
<td>122, 245, 340</td>
</tr>
<tr>
<td>WorldCom</td>
<td>64, 234, 235, 246, 255, 341</td>
</tr>
<tr>
<td>Worst case analysis</td>
<td>277</td>
</tr>
<tr>
<td>Worst case drills</td>
<td>276</td>
</tr>
<tr>
<td>Wriston, Walter</td>
<td>113</td>
</tr>
<tr>
<td>Y2K</td>
<td>277, 296</td>
</tr>
<tr>
<td>Y2K compliance</td>
<td>67, 68</td>
</tr>
<tr>
<td>Y2K litigation</td>
<td>67, 68</td>
</tr>
<tr>
<td>Zürich Insurance</td>
<td>245, 290</td>
</tr>
</tbody>
</table>